Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bioessays ; 45(5): e2200250, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36855056

RESUMEN

Extraordinary extended lampbrush chromosomes with thousands of transcription loops are favorable objects in chromosome biology. Chromosomes become lampbrushy due to unusually high rate of transcription during oogenesis. However, until recently, the information on the spectrum of transcribed sequences as well as genomic context of individual chromomeres was mainly limited to tandemly repetitive elements. Here we briefly outline novel findings and future directions in lampbrush chromosome studies in the post-genomic era. We emphasize the fruitfulness of combining genome-wide approaches with microscopy imaging techniques using lampbrush chromosomes as a remarkable model object. We believe that new data on the spectrum of sequences transcribed on the lateral loops of lampbrush chromosomes and their structural organization push the boundaries in the discussion of their biological role. Also see the video abstract here: https://youtu.be/zexoHfzX9rM.


Asunto(s)
Cromosomas , Transcripción Genética , Cromosomas/genética , Genómica
2.
Chromosoma ; 131(4): 207-223, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36031655

RESUMEN

In diplotene oocyte nuclei of all vertebrate species, except mammals, chromosomes lack interchromosomal contacts and chromatin is linearly compartmentalized into distinct chromomere-loop complexes forming lampbrush chromosomes. However, the mechanisms underlying the formation of chromomere-loop complexes remain unexplored. Here we aimed to compare somatic topologically associating domains (TADs), recently identified in chicken embryonic fibroblasts, with chromomere-loop complexes in lampbrush meiotic chromosomes. By measuring 3D-distances and colocalization between linear equidistantly located genomic loci, positioned within one TAD or separated by a TAD border, we confirmed the presence of predicted TADs in chicken embryonic fibroblast nuclei. Using three-colored FISH with BAC probes, we mapped equidistant genomic regions included in several sequential somatic TADs on isolated chicken lampbrush chromosomes. Eight genomic regions, each comprising two or three somatic TADs, were mapped to non-overlapping neighboring lampbrush chromatin domains - lateral loops, chromomeres, or chromomere-loop complexes. Genomic loci from the neighboring somatic TADs could localize in one lampbrush chromomere-loop complex, while genomic loci belonging to the same somatic TAD could be localized in neighboring lampbrush chromomere-loop domains. In addition, FISH-mapping of BAC probes to the nascent transcripts on the lateral loops indicates transcription of at least 17 protein-coding genes and 2 non-coding RNA genes during the lampbrush stage of chicken oogenesis, including genes involved in oocyte maturation and early embryo development.


Asunto(s)
Profase Meiótica I , Oocitos , Animales , Embrión de Pollo , Oogénesis/genética , Genómica , Pollos/genética , Cromatina/genética , Mamíferos
3.
Sensors (Basel) ; 20(17)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32839389

RESUMEN

The determination of antibiotics in food is important due to their negative effect on human health related to antimicrobial resistance problem, renal toxicity, and allergic effects. We propose an impedimetric aptasensor for the determination of kanamycin A (KANA), which was assembled on the glassy carbon electrode by the deposition of carbon black in a chitosan matrix followed by carbodiimide binding of aminated aptamer mixed with oligolactide derivative of thiacalix[4]arene in a cone configuration. The assembling was monitored by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. In the presence of the KANA, the charge transfer resistance of the inner interface surprisingly decreased with the analyte concentration within 0.7 and 50 nM (limit of detection 0.3 nM). This was attributed to the partial shielding of the negative charge of the aptamer and of its support, a highly porous 3D structure of the surface layer caused by a macrocyclic core of the carrier. The use of electrostatic assembling in the presence of cationic polyelectrolyte decreased tenfold the detectable concentration of KANA. The aptasensor was successfully tested in the determination of KANA in spiked milk and yogurt with recoveries within 95% and 115%.

4.
BMC Genomics ; 17: 126, 2016 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-26897606

RESUMEN

BACKGROUND: Over the past two decades, chromosome microdissection has been widely used in diagnostics and research enabling analysis of chromosomes and their regions through probe generation and establishing of chromosome- and chromosome region-specific DNA libraries. However, relatively small physical size of mitotic chromosomes limited the use of the conventional chromosome microdissection for investigation of tiny chromosomal regions. RESULTS: In the present study, we developed a workflow for mechanical microdissection of giant transcriptionally active lampbrush chromosomes followed by the preparation of whole-chromosome and locus-specific fluorescent in situ hybridization (FISH)-probes and high-throughput sequencing. In particular, chicken (Gallus g. domesticus) lampbrush chromosome regions as small as single chromomeres, individual lateral loops and marker structures were successfully microdissected. The dissected fragments were mapped with high resolution to target regions of the corresponding lampbrush chromosomes. For investigation of RNA-content of lampbrush chromosome structures, samples retrieved by microdissection were subjected to reverse transcription. Using high-throughput sequencing, the isolated regions were successfully assigned to chicken genome coordinates. As a result, we defined precisely the loci for marker structures formation on chicken lampbrush chromosomes 2 and 3. Additionally, our data suggest that large DAPI-positive chromomeres of chicken lampbrush chromosome arms are characterized by low gene density and high repeat content. CONCLUSIONS: The developed technical approach allows to obtain DNA and RNA samples from particular lampbrush chromosome loci, to define precisely the genomic position, extent and sequence content of the dissected regions. The data obtained demonstrate that lampbrush chromosome microdissection provides a unique opportunity to correlate a particular transcriptional domain or a cytological structure with a known DNA sequence. This approach offers great prospects for detailed exploration of functionally significant chromosomal regions.


Asunto(s)
Cromosomas/ultraestructura , Sondas de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Hibridación Fluorescente in Situ , Microdisección , Animales , Pollos , Mapeo Cromosómico , Citogenética/métodos , Biblioteca de Genes , Análisis de Secuencia de ADN
5.
Epigenetics Chromatin ; 16(1): 24, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322523

RESUMEN

BACKGROUND: The three-dimensional configuration of the eukaryotic genome is an emerging area of research. Chromosome conformation capture outlined genome segregation into large scale A and B compartments corresponding mainly to transcriptionally active and repressive chromatin. It remains unknown how the compartmentalization of the genome changes in growing oocytes of animals with hypertranscriptional type of oogenesis. Such oocytes are characterized by highly elongated chromosomes, called lampbrush chromosomes, which acquire a typical chromomere-loop appearance, representing one of the classical model systems for exploring the structural and functional organization of chromatin domains. RESULTS: Here, we compared the distribution of A/B compartments in chicken somatic cells with chromatin domains in lampbrush chromosomes. We found that in lampbrush chromosomes, the extended chromatin domains, restricted by compartment boundaries in somatic cells, disintegrate into individual chromomeres. Next, we performed FISH-mapping of the genomic loci, which belong to A or B chromatin compartments as well as to A/B compartment transition regions in embryonic fibroblasts on isolated lampbrush chromosomes. We found, that in chicken lampbrush chromosomes, clusters of dense compact chromomeres bearing short lateral loops and enriched with repressive epigenetic modifications generally correspond to constitutive B compartments in somatic cells. A compartments align with lampbrush chromosome segments with smaller, less compact chromomeres, longer lateral loops, and a higher transcriptional status. Clusters of small loose chromomeres with relatively long lateral loops show no obvious correspondence with either A or B compartment identity. Some genes belonging to facultative B (sub-) compartments can be tissue-specifically transcribed during oogenesis, forming distinct lateral loops. CONCLUSIONS: Here, we established a correspondence between the A/B compartments in somatic interphase nucleus and chromatin segments in giant lampbrush chromosomes from diplotene stage oocytes. The chromomere-loop structure of the genomic regions corresponding to interphase A and B compartments reveals the difference in how they are organized at the level of chromatin domains. The results obtained also suggest that gene-poor regions tend to be packed into chromomeres.


Asunto(s)
Cromatina , Cromosomas , Animales , Cromatina/genética , Cromosomas/genética , Núcleo Celular , Pollos , Oocitos
6.
Mol Cytogenet ; 13: 32, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32774459

RESUMEN

BACKGROUND: The epigenetic regulation of genome is crucial for implementation of the genetic program of ontogenesis through establishing and maintaining differential gene expression. Thus mapping of various epigenetic modifications to the genome is relevant for studying the regulation of gene expression. Giant transcriptionally active lampbrush chromosomes are an established tool for high resolution physical mapping of the genome and its epigenetic modifications. This study is aimed at characterizing the epigenetic status of compact chromatin domains (chromomeres) of chicken lampbrush macrochromosomes. RESULTS: Distribution of three epigenetic modifications - 5-methylcytosine, histone H3 trimethylated at lysine 9 and hyperacetylated histone H4 - along the axes of chicken lampbrush chromosomes 1-4, Z and W was analyzed in details. Enrichment of chromatin domains with the investigated epigenetic modifications was indicated on the cytological chromomere-loop maps for corresponding chicken lampbrush chromosomes. Heterogeneity in the distribution of 5-methylcytosine and histone H3 trimethylated at lysine 9 along the chromosome axes was revealed. CONCLUSIONS: On examples of certain chromomeres of chicken lampbrush chromosomes 1, 3, 4 and W we demonstrated that a combination of immunofluorescent staining and fluorescence in situ hybridization allows to relate the epigenetic status and a DNA sequence context of individual chromomeres.

7.
Noncoding RNA ; 6(1)2019 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-31881720

RESUMEN

In the cell nuclei, various types of nuclear domains assemble as a result of transcriptional activity at specific chromosomal loci. Giant transcriptionally active lampbrush chromosomes, which form in oocyte nuclei of amphibians and birds enable the mapping of genomic sequences with high resolution and the visualization of individual transcription units. This makes avian and amphibian oocyte nuclei an advantageous model for studying locus-specific nuclear domains. We developed two strategies for identification and comprehensive analysis of the genomic loci involved in nuclear domain formation on lampbrush chromosomes. The first approach was based on the sequential FISH-mapping of BAC clones containing genomic DNA fragments with a known chromosomal position close to the locus of a nuclear domain. The second approach involved mechanical microdissection of the chromosomal region adjacent to the nuclear domain followed by the generation of FISH-probes and DNA sequencing. Furthermore, deciphering the DNA sequences from the dissected material by high throughput sequencing technologies and their mapping to the reference genome helps to identify the genomic region responsible for the formation of the nuclear domain. For those nuclear domains structured by nascent transcripts, identification of genomic loci of their formation is a crucial step in the identification of scaffold RNAs.

8.
Sci Rep ; 6: 36878, 2016 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-27857188

RESUMEN

Nucleus is a highly compartmentalized part of the cell where the key processes of genome functionality are realized through the formation of non-membranous nuclear domains. Physically nuclear domains appear as liquid droplets with different viscosity stably maintained throughout the interphase or during the long diplotene stage of meiosis. Since nuclear body surface represents boundary between two liquid phases, the ultrastructural surface topography of nuclear domains is of an outstanding interest. The aim of this study was to examine ultrathin surface topography of the amphibian and avian oocyte nuclear structures such as lampbrush chromosomes, nucleoli, histone-locus bodies, Cajal body-like bodies, and the interchromatin granule clusters via low-voltage scanning electron microscopy. Our results demonstrate that nuclear bodies with similar molecular composition may differ dramatically in the surface topography and vice versa, nuclear bodies that do not share common molecular components may possess similar topographical characteristics. We also have analyzed surface distribution of particular nuclear antigens (double stranded DNA, coilin and splicing snRNA) using indirect immunogold labeling with subsequent secondary electron detection of gold nanoparticles. We suggest that ultrastructural surface morphology reflects functional status of a nuclear body.


Asunto(s)
Núcleo Celular/ultraestructura , Cromosomas/ultraestructura , Cuerpos Enrollados/ultraestructura , Microscopía Electrónica de Rastreo/métodos , Oocitos/ultraestructura , Anfibios , Animales , Aves , Propiedades de Superficie
9.
Chromosoma ; 116(6): 519-30, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17619894

RESUMEN

The chromosomal distribution of 41-bp repeats, known as CNM and PO41 repeats in the chicken genome and BglII repeats in the Japanese quail, was analyzed precisely using giant lampbrush chromosomes (LBC) from chicken, Japanese quail, and turkey growing oocytes. The PO41 repeat is conserved in all galliform species, whereas the other repeats are species specific. In chicken and quail, the centromere and subtelomere regions share homologous satellite sequences. RNA polymerase II transcribes the 41-bp repeats in both centromere and subtelomere regions. Ongoing transcription of these repeats was demonstrated by incorporation of BrUTP injected into oocytes at the lampbrush stage. RNA complementary to both strands of CNM and PO41 repeats is present on chicken LBC loops, whereas strand-specific G-rich transcripts are characteristic of BglII repeats in the Japanese quail. The RNA from 41-bp repeats does not undergo cotranscriptional U snRNP-dependent splicing. At the same time, the ribonucleoprotein matrix of transcription units with C-rich RNA of CNM and PO41 repeats was enriched with hnRNP protein K. Potential promoters for satellite transcription are discussed.


Asunto(s)
Pollos/genética , Mapeo Cromosómico , Coturnix/genética , Genoma/genética , Hibridación Fluorescente in Situ , Secuencias Repetidas en Tándem/genética , Transcripción Genética/genética , Animales , Femenino , Oocitos , Pavos/genética
10.
Chromosoma ; 113(6): 316-23, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15616868

RESUMEN

In the oocyte nuclei (germinal vesicle or GV) of a variety of avian species, prominent spherical entities termed protein bodies (PBs) arise at the centromeric regions of the lampbrush chromosomes (LBCs). In spite of the obvious protein nature of PBs, nothing is known about their composition. We show that an antibody against DNA topoisomerase II (topo II), the DNA unwinding enzyme, recognizes PBs from chaffinch and pigeon oocytes. In later chaffinch oocytes, the PBs fuse to form a karyosphere, which is also labeled by the anti-topo II antibody. Furthermore, we show that proteins characteristic of Cajal bodies and B-snurposomes are not found in PBs, despite morphological similarities among these structures. Using immunoelectron microscopy and immunofluorescent laser scanning microscopy we demonstrated that topo II localizes predominantly in the dense material of PBs. Two antigens of approximately 170 kDa (which corresponds to topo II) and approximately 100 kDa were revealed with the antibody against topo II on immunoblots of avian GV proteins. We propose that the smaller protein results from oocyte specific topo II cleavage, since it was not detected in nuclei from testis cells. This represents the first report of a defined protein in the centromeric PBs on avian LBCs.


Asunto(s)
Antígenos de Neoplasias/inmunología , Proteínas Aviares/análisis , Aves/genética , Centrómero/química , Estructuras Cromosómicas/química , ADN-Topoisomerasas de Tipo II/inmunología , Proteínas de Unión al ADN/inmunología , Proteínas Nucleares/análisis , Animales , Anticuerpos Monoclonales/inmunología , Antígenos de Neoplasias/análisis , Estructuras Cromosómicas/ultraestructura , Columbidae/genética , ADN-Topoisomerasas de Tipo II/análisis , Proteínas de Unión al ADN/análisis , Masculino , Proteínas Nucleares/inmunología , Oocitos/química , Oocitos/crecimiento & desarrollo , Passeriformes/genética , Empalme del ARN , Ribonucleoproteínas Nucleares Pequeñas/análisis , Testículo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA