Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 28(20): 3431-3442, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31411676

RESUMEN

Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin. Prior work has shown that DMD progression can vary, depending on the genetic makeup of the patient. Several modifier alleles have been identified including LTBP4 and SPP1. We previously showed that Spp1 exacerbates the DMD phenotype in the mdx mouse model by promoting fibrosis and by skewing macrophage polarization. Here, we studied the mechanisms involved in Spp1's promotion of fibrosis by using both isolated fibroblasts and genetically modified mice. We found that Spp1 upregulates collagen expression in mdx fibroblasts by enhancing TGFß signaling. Spp1's effects on TGFß signaling are through induction of MMP9 expression. MMP9 is a protease that can release active TGFß ligand from its latent complex. In support for activation of this pathway in our model, we showed that treatment of mdx fibroblasts with MMP9 inhibitor led to accumulation of the TGFß latent complex, decreased levels of active TGFß and reduced collagen expression. Correspondingly, we found reduced active TGFß in Spp1-/-mdxB10 and Mmp9-/-mdxB10 muscles in vivo. Taken together with previous observations of reduced fibrosis in both models, these data suggest that Spp1 acts upstream of TGFß to promote fibrosis in mdx muscles. We found that in the context of constitutively upregulated TGFß signaling (such as in the mdxD2 model), ablation of Spp1 has very little effect on fibrosis. Finally, we performed proof-of-concept studies showing that postnatal pharmacological inhibition of Spp1 reduces fibrosis and improves muscle function in mdx mice.


Asunto(s)
Fibrosis/genética , Distrofia Muscular de Duchenne/metabolismo , Osteopontina/genética , Factor de Crecimiento Transformador beta/metabolismo , Animales , Colágeno Tipo I/biosíntesis , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Matriz Extracelular/metabolismo , Femenino , Fibroblastos/metabolismo , Fibrosis/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Osteopontina/metabolismo , Cultivo Primario de Células , Regeneración/genética , Transducción de Señal , Factor de Crecimiento Transformador beta/genética
2.
Nat Chem Biol ; 8(9): 784-90, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22842973

RESUMEN

Collagen IV comprises the predominant protein network of basement membranes, a specialized extracellular matrix, which underlie epithelia and endothelia. These networks assemble through oligomerization and covalent crosslinking to endow mechanical strength and shape cell behavior through interactions with cell-surface receptors. A recently discovered sulfilimine (S=N) bond between a methionine sulfur and hydroxylysine nitrogen reinforces the collagen IV network. We demonstrate that peroxidasin, an enzyme found in basement membranes, catalyzes formation of the sulfilimine bond. Drosophila peroxidasin mutants have disorganized collagen IV networks and torn visceral muscle basement membranes, pointing to a critical role for the enzyme in tissue biogenesis. Peroxidasin generates hypohalous acids as reaction intermediates, suggesting a paradoxically anabolic role for these usually destructive oxidants. This work highlights sulfilimine bond formation as what is to our knowledge the first known physiologic function for peroxidasin, a role for hypohalous oxidants in tissue biogenesis, and a possible role for peroxidasin in inflammatory diseases.


Asunto(s)
Ácidos/química , Proteínas de la Matriz Extracelular/química , Iminas/química , Peroxidasa/química , Animales , Catálisis , Colágeno Tipo IV/química , Drosophila/química , Peroxidasina
3.
Cell Stem Cell ; 18(4): 533-40, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26877224

RESUMEN

Mutations in DMD disrupt the reading frame, prevent dystrophin translation, and cause Duchenne muscular dystrophy (DMD). Here we describe a CRISPR/Cas9 platform applicable to 60% of DMD patient mutations. We applied the platform to DMD-derived hiPSCs where successful deletion and non-homologous end joining of up to 725 kb reframed the DMD gene. This is the largest CRISPR/Cas9-mediated deletion shown to date in DMD. Use of hiPSCs allowed evaluation of dystrophin in disease-relevant cell types. Cardiomyocytes and skeletal muscle myotubes derived from reframed hiPSC clonal lines had restored dystrophin protein. The internally deleted dystrophin was functional as demonstrated by improved membrane integrity and restoration of the dystrophin glycoprotein complex in vitro and in vivo. Furthermore, miR31 was reduced upon reframing, similar to observations in Becker muscular dystrophy. This work demonstrates the feasibility of using a single CRISPR pair to correct the reading frame for the majority of DMD patients.


Asunto(s)
Sistemas CRISPR-Cas/genética , Distrofina/metabolismo , Eliminación de Gen , Edición Génica/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Animales , Distrofina/deficiencia , Distrofina/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/patología , Ratones , Ratones SCID , Músculo Esquelético/citología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA