RESUMEN
PURPOSE: Following automated variant calling, manual review of aligned read sequences is required to identify a high-quality list of somatic variants. Despite widespread use in analyzing sequence data, methods to standardize manual review have not been described, resulting in high inter- and intralab variability. METHODS: This manual review standard operating procedure (SOP) consists of methods to annotate variants with four different calls and 19 tags. The calls indicate a reviewer's confidence in each variant and the tags indicate commonly observed sequencing patterns and artifacts that inform the manual review call. Four individuals were asked to classify variants prior to, and after, reading the SOP and accuracy was assessed by comparing reviewer calls with orthogonal validation sequencing. RESULTS: After reading the SOP, average accuracy in somatic variant identification increased by 16.7% (p value = 0.0298) and average interreviewer agreement increased by 12.7% (p value < 0.001). Manual review conducted after reading the SOP did not significantly increase reviewer time. CONCLUSION: This SOP supports and enhances manual somatic variant detection by improving reviewer accuracy while reducing the interreviewer variability for variant calling and annotation.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/normas , Mutación/genética , Neoplasias/genética , Programas Informáticos , Algoritmos , Humanos , Neoplasias/patología , Polimorfismo de Nucleótido Simple/genética , Alineación de SecuenciaRESUMEN
UNLABELLED: Visualizing and summarizing data from genomic studies continues to be a challenge. Here, we introduce the GenVisR package to addresses this challenge by providing highly customizable, publication-quality graphics focused on cohort level genome analyses. GenVisR provides a rapid and easy-to-use suite of genomic visualization tools, while maintaining a high degree of flexibility by leveraging the abilities of ggplot2 and Bioconductor. AVAILABILITY AND IMPLEMENTATION: GenVisR is an R package available via Bioconductor (https://bioconductor.org/packages/GenVisR) under GPLv3. Support is available via GitHub (https://github.com/griffithlab/GenVisR/issues) and the Bioconductor support website. CONTACTS: obigriffith@wustl.edu or mgriffit@wustl.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Genómica , Programas Informáticos , GenomaRESUMEN
Germline de novo mutations (DNMs) refer to spontaneous mutations arising during gametogenesis, resulting in genetic changes within germ cells that are subsequently transmitted to the next generation. While the impact of maternal exposures on germline DNMs has been extensively studied, more recent studies have begun to highlight the increasing importance of the effects of paternal factors. In this review, we have summarized the existing literature on how various exposures experienced by fathers affect the germline DNM burden in their spermatozoa, as well as their consequences for semen analysis parameters, pregnancy outcomes, and offspring health. A growing body of literature supports the conclusion that advanced paternal age (APA) correlates with a higher germline DNM rate in offspring. Furthermore, lifestyle choices, environmental toxins, assisted reproductive techniques (ART), and chemotherapy are associated with the accumulation of paternal DNMs in spermatozoa, with deleterious consequences for pregnancy outcomes and offspring health. Ultimately, our review highlights the clear importance of the germline DNM mode of inheritance, and the current understanding of how this is affected by various paternal factors. In addition, we explore conflicting reports or gaps of knowledge that should be addressed in future research.
RESUMEN
Somatic mutations within non-coding regions and even exons may have unidentified regulatory consequences that are often overlooked in analysis workflows. Here we present RegTools ( www.regtools.org ), a computationally efficient, free, and open-source software package designed to integrate somatic variants from genomic data with splice junctions from bulk or single cell transcriptomic data to identify variants that may cause aberrant splicing. We apply RegTools to over 9000 tumor samples with both tumor DNA and RNA sequence data. RegTools discovers 235,778 events where a splice-associated variant significantly increases the splicing of a particular junction, across 158,200 unique variants and 131,212 unique junctions. To characterize these somatic variants and their associated splice isoforms, we annotate them with the Variant Effect Predictor, SpliceAI, and Genotype-Tissue Expression junction counts and compare our results to other tools that integrate genomic and transcriptomic data. While many events are corroborated by the aforementioned tools, the flexibility of RegTools also allows us to identify splice-associated variants in known cancer drivers, such as TP53, CDKN2A, and B2M, and other genes.
Asunto(s)
Neoplasias , Transcriptoma , Humanos , Transcriptoma/genética , Genómica , Empalme del ARN/genética , Genoma , Neoplasias/genética , Empalme Alternativo/genéticaRESUMEN
The negative effect of advanced female age on fertility and offspring health is well understood. In comparison, much less is known about the implications of male age on fertility, with many studies showing conflicting results. Nevertheless, increasing evidence suggests that advanced paternal age has negative effects on sperm parameters, reproductive success, and offspring health. Herein, we summarize the current body of knowledge on this controversial topic, with the belief that this review will serve as a resource for the clinicians providing fertility counseling to couples with older male partners.
Asunto(s)
Fertilidad , Semen , Masculino , Humanos , Femenino , Edad Paterna , Envejecimiento , ReproducciónRESUMEN
Osteosarcoma is a rare disease in children but is one of the most common cancers in adult large breed dogs. The mutational landscape of both the primary and pulmonary metastatic tumor in two dogs with appendicular osteosarcoma (OSA) was comprehensively evaluated using an automated whole genome sequencing, exome and RNA-seq pipeline that was adapted for this study for use in dogs. Chromosomal lesions were the most common type of mutation. The mutational landscape varied substantially between dogs but the lesions within the same patient were similar. Copy number neutral loss of heterozygosity in mutant TP53 was the most significant driver mutation and involved a large region in the middle of chromosome 5. Canine and human OSA is characterized by loss of cell cycle checkpoint integrity and DNA damage response pathways. Mutational profiling of individual patients with canine OSA would be recommended prior to targeted therapy, given the heterogeneity seen in our study and previous studies.
Asunto(s)
Neoplasias Óseas , Enfermedades de los Perros/genética , Neoplasias Primarias Secundarias/veterinaria , Osteosarcoma , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/veterinaria , Perros , Genes p53/genética , Masculino , Mutación , Neoplasias Primarias Secundarias/genética , Osteosarcoma/genética , Osteosarcoma/veterinariaRESUMEN
Nearly all patients with small cell lung cancer (SCLC) eventually relapse with chemoresistant disease. The molecular mechanisms driving chemoresistance in SCLC remain un-characterized. Here, we describe whole-exome sequencing of paired SCLC tumor samples procured at diagnosis and relapse from 12 patients, and unpaired relapse samples from 18 additional patients. Multiple somatic copy number alterations, including gains in ABCC1 and deletions in MYCL, MSH2, and MSH6, are identifiable in relapsed samples. Relapse samples also exhibit recurrent mutations and loss of heterozygosity in regulators of WNT signaling, including CHD8 and APC. Analysis of RNA-sequencing data shows enrichment for an ASCL1-low expression subtype and WNT activation in relapse samples. Activation of WNT signaling in chemosensitive human SCLC cell lines through APC knockdown induces chemoresistance. Additionally, in vitro-derived chemoresistant cell lines demonstrate increased WNT activity. Overall, our results suggest WNT signaling activation as a mechanism of chemoresistance in relapsed SCLC.
Asunto(s)
Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células Pequeñas/genética , Vía de Señalización Wnt/genética , Proteína de la Poliposis Adenomatosa del Colon/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cadherinas/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Pérdida de Heterocigocidad , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Mutación , Recurrencia Local de Neoplasia , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/patología , Secuenciación del Exoma , Vía de Señalización Wnt/efectos de los fármacosRESUMEN
The original version of this Article contained errors in the depiction of confidence intervals in the NF1 BCSS data illustrated in Figure 3b. These have now been corrected in both the PDF and HTML versions of the Article. The incorrect version of Figure 3b is presented in the associated Author Correction.
RESUMEN
Here we report targeted sequencing of 83 genes using DNA from primary breast cancer samples from 625 postmenopausal (UBC-TAM series) and 328 premenopausal (MA12 trial) hormone receptor-positive (HR+) patients to determine interactions between somatic mutation and prognosis. Independent validation of prognostic interactions was achieved using data from the METABRIC study. Previously established associations between MAP3K1 and PIK3CA mutations with luminal A status/favorable prognosis and TP53 mutations with Luminal B/non-luminal tumors/poor prognosis were observed, validating the methodological approach. In UBC-TAM, NF1 frame-shift nonsense (FS/NS) mutations were also a poor outcome driver that was validated in METABRIC. For MA12, poor outcome associated with PIK3R1 mutation was also reproducible. DDR1 mutations were strongly associated with poor prognosis in UBC-TAM despite stringent false discovery correction (q = 0.0003). In conclusion, uncommon recurrent somatic mutations should be further explored to create a more complete explanation of the highly variable outcomes that typifies ER+ breast cancer.