Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(6): 1419-1440.e23, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32810438

RESUMEN

Coronavirus disease 2019 (COVID-19) is a mild to moderate respiratory tract infection, however, a subset of patients progress to severe disease and respiratory failure. The mechanism of protective immunity in mild forms and the pathogenesis of severe COVID-19 associated with increased neutrophil counts and dysregulated immune responses remain unclear. In a dual-center, two-cohort study, we combined single-cell RNA-sequencing and single-cell proteomics of whole-blood and peripheral-blood mononuclear cells to determine changes in immune cell composition and activation in mild versus severe COVID-19 (242 samples from 109 individuals) over time. HLA-DRhiCD11chi inflammatory monocytes with an interferon-stimulated gene signature were elevated in mild COVID-19. Severe COVID-19 was marked by occurrence of neutrophil precursors, as evidence of emergency myelopoiesis, dysfunctional mature neutrophils, and HLA-DRlo monocytes. Our study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals profound alterations in the myeloid cell compartment associated with severe COVID-19.


Asunto(s)
Infecciones por Coronavirus/inmunología , Células Mieloides/inmunología , Mielopoyesis , Neumonía Viral/inmunología , Adulto , Anciano , Antígenos CD11/genética , Antígenos CD11/metabolismo , COVID-19 , Células Cultivadas , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/patología , Femenino , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Células Mieloides/citología , Pandemias , Neumonía Viral/sangre , Neumonía Viral/patología , Proteoma/genética , Proteoma/metabolismo , Proteómica , Análisis de la Célula Individual
2.
Immun Ageing ; 18(1): 20, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879187

RESUMEN

BACKGROUND: Immune ageing is a result of repetitive microbial challenges along with cell intrinsic or systemic changes occurring during ageing. Mice under 'specific-pathogen-free' (SPF) conditions are frequently used to assess immune ageing in long-term experiments. However, physiological pathogenic challenges are reduced in SPF mice. The question arises to what extent murine experiments performed under SPF conditions are suited to analyze immune ageing in mice and serve as models for human immune ageing. Our previous comparisons of same aged mice with different microbial exposures, unambiguously identified distinct clusters of immune cells characteristic for numerous previous pathogen encounters in particular in pet shop mice. RESULTS: We here performed single cell mass cytometry assessing splenic as secondary and bone marrow as primary lymphoid organ-derived leukocytes isolated from young versus aged SPF mice in order to delineate alterations of the murine hematopoietic system induced during ageing. We then compared immune clusters from young and aged SPF mice to pet shop mice in order to delineate alterations of the murine hematopoietic system induced by physiological pathogenic challenges and those caused by cell intrinsic or systemic changes during ageing. Notably, distinct immune signatures were similarly altered in both pet shop and aged SPF mice in comparison to young SPF mice, including increased frequencies of memory T lymphocytes, effector-cytokine producing T cells, plasma cells and mature NK cells. However, elevated frequencies of CD4+ T cells, total NK cells, granulocytes, pDCs, cDCs and decreased frequencies of naïve B cells were specifically identified only in pet shop mice. In aged SPF mice specifically the frequencies of splenic IgM+ plasma cells, CD8+ T cells and CD4+ CD25+ Treg were increased as compared to pet shop mice and young mice. CONCLUSIONS: Our study dissects firstly how ageing impacts both innate and adaptive immune cells in primary and secondary lymphoid organs. Secondly, it partly distinguishes murine intrinsic immune ageing alterations from those induced by physiological pathogen challenges highlighting the importance of designing mouse models for their use in preclinical research including vaccines and immunotherapies.

4.
J Infect Dis ; 217(9): 1421-1425, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29390066

RESUMEN

Cell-free and cell-associated human immunodeficiency virus (HIV) may differently affect the immune system and the efficacy of prevention strategies. Here we examined mucosal events in simian immunodeficiency virus (SIV) infection, using infected cells together with cell-free virus and cell-free virus alone. Intravenously inoculated SIV-infected cells disseminated virus to the intestine within 16 hours. Infection with both virus forms accelerated viral dissemination in the intestinal mucosa and the loss of mucosal CD4+ T cells as compared to infection with cell-free virus only. As all natural sources of HIV infection contain both virus forms, future prevention studies should focus on efficacy against both cell-free and cell-associated virus.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Mucosa Intestinal/citología , Mucosa Intestinal/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Animales , ADN Viral/aislamiento & purificación , Macaca mulatta , ARN Viral/aislamiento & purificación , Carga Viral , Replicación Viral/fisiología
5.
Cytometry A ; 91(1): 85-95, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27403624

RESUMEN

A great part of our knowledge on mammalian immunology has been established in laboratory settings. The use of inbred mouse strains enabled controlled studies of immune cell and molecule functions in defined settings. These studies were usually performed in specific-pathogen free (SPF) environments providing standardized conditions. In contrast, mammalians including humans living in their natural habitat are continuously facing pathogen encounters throughout their life. The influences of environmental conditions on the signatures of the immune system and on experimental outcomes are yet not well defined. Thus, the transferability of results obtained in current experimental systems to the physiological human situation has always been a matter of debate. Studies elucidating the diversity of "wild immunology" imprintings in detail and comparing it with those of "clean" lab mice are sparse. Here, we applied multidimensional mass cytometry to dissect phenotypic and functional differences between distinct groups of laboratory and pet shop mice as a source for "wild mice". For this purpose, we developed a 31-antibody panel for murine leukocyte subsets identification and a 35-antibody panel assessing various cytokines. Established murine leukocyte populations were easily identified and diverse immune signatures indicative of numerous pathogen encounters were classified particularly in pet shop mice and to a lesser extent in quarantine and non-SPF mice as compared to SPF mice. In addition, unsupervised analysis identified distinct clusters that associated strongly with the degree of pathogenic priming, including increased frequencies of activated NK cells and antigen-experienced B- and T-cell subsets. Our study unravels the complexity of immune signatures altered under physiological pathogen challenges and highlights the importance of carefully adapting laboratory settings for immunological studies in mice, including drug and therapy testing. © 2016 International Society for Advancement of Cytometry.


Asunto(s)
Citometría de Imagen/métodos , Células Asesinas Naturales/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Humanos , Leucocitos/inmunología , Ratones , Ratones Endogámicos/inmunología
6.
J Virol ; 89(1): 751-62, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25355871

RESUMEN

UNLABELLED: Natural hosts of simian immunodeficiency virus (SIV), such as African green monkeys (AGMs), do not progress to AIDS when infected with SIV. This is associated with an absence of a chronic type I interferon (IFN-I) signature. It is unclear how the IFN-I response is downmodulated in AGMs. We longitudinally assessed the capacity of AGM blood cells to produce IFN-I in response to SIV and herpes simplex virus (HSV) infection. Phenotypes and functions of plasmacytoid dendritic cells (pDCs) and other mononuclear blood cells were assessed by flow cytometry, and expression of viral sensors was measured by reverse transcription-PCR. pDCs displayed low BDCA-2, CD40, and HLA-DR expression levels during AGM acute SIV (SIVagm) infection. BDCA-2 was required for sensing of SIV, but not of HSV, by pDCs. In acute infection, AGM peripheral blood mononuclear cells (PBMCs) produced less IFN-I upon SIV stimulation. In the chronic phase, the production was normal, confirming that the lack of chronic inflammation is not due to a sensing defect of pDCs. In contrast to stimulation by SIV, more IFN-I was produced upon HSV stimulation of PBMCs isolated during acute infection, while the frequency of AGM pDCs producing IFN-I upon in vitro stimulation with HSV was diminished. Indeed, other cells started producing IFN-I. This increased viral sensing by non-pDCs was associated with an upregulation of Toll-like receptor 3 and IFN-γ-inducible protein 16 caused by IFN-I in acute SIVagm infection. Our results suggest that, as in pathogenic SIVmac infection, SIVagm infection mobilizes bone marrow precursor pDCs. Moreover, we show that SIV infection modifies the capacity of viral sensing in cells other than pDCs, which could drive IFN-I production in specific settings. IMPORTANCE: The effects of HIV/SIV infections on the capacity of plasmacytoid dendritic cells (pDCs) to produce IFN-I in vivo are still incompletely defined. As IFN-I can restrict viral replication, contribute to inflammation, and influence immune responses, alteration of this capacity could impact the viral reservoir size. We observed that even in nonpathogenic SIV infection, the frequency of pDCs capable of efficiently sensing SIV and producing IFN-I was reduced during acute infection. We discovered that, concomitantly, cells other than pDCs had increased abilities for viral sensing. Our results suggest that pDC-produced IFN-I upregulates viral sensors in bystander cells, the latter gaining the capacity to produce IFN-I. These results indicate that in certain settings, cells other than pDCs can drive IFN-I-associated inflammation in SIV infection. This has important implications for the understanding of persistent inflammation and the establishment of viral reservoirs.


Asunto(s)
Interferón Tipo I/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Chlorocebus aethiops , Citometría de Flujo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
PLoS Pathog ; 10(7): e1004241, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24991927

RESUMEN

Chronic immune activation (IA) is considered as the driving force of CD4(+) T cell depletion and AIDS. Fundamental clues in the mechanisms that regulate IA could lie in natural hosts of SIV, such as African green monkeys (AGMs). Here we investigated the role of innate immune cells and IFN-α in the control of IA in AGMs. AGMs displayed significant NK cell activation upon SIVagm infection, which was correlated with the levels of IFN-α. Moreover, we detected cytotoxic NK cells in lymph nodes during the early acute phase of SIVagm infection. Both plasmacytoid and myeloid dendritic cell (pDC and mDC) homing receptors were increased, but the maturation of mDCs, in particular of CD16+ mDCs, was more important than that of pDCs. Monitoring of 15 cytokines showed that those, which are known to be increased early in HIV-1/SIVmac pathogenic infections, such as IL-15, IFN-α, MCP-1 and CXCL10/IP-10, were significantly increased in AGMs as well. In contrast, cytokines generally induced in the later stage of acute pathogenic infection, such as IL-6, IL-18 and TNF-α, were less or not increased, suggesting an early control of IA. We then treated AGMs daily with high doses of IFN-α from day 9 to 24 post-infection. No impact was observed on the activation or maturation profiles of mDCs, pDCs and NK cells. There was also no major difference in T cell activation or interferon-stimulated gene (ISG) expression profiles and no sign of disease progression. Thus, even after administration of high levels of IFN-α during acute infection, AGMs were still able to control IA, showing that IA control is independent of IFN-α levels. This suggests that the sustained ISG expression and IA in HIV/SIVmac infections involves non-IFN-α products.


Asunto(s)
Antivirales/farmacología , Inmunidad Innata/efectos de los fármacos , Interferón-alfa/farmacología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Chlorocebus aethiops , Citocinas/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/patología , Inflamación/virología , Activación de Linfocitos/efectos de los fármacos , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Linfocitos T/inmunología , Linfocitos T/patología
8.
Cytometry A ; 89(11): 1017-1030, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27813253

RESUMEN

The purpose of this document is to define minimal standards for a flow cytometry shared resource laboratory (SRL) and provide guidance for best practices in several important areas. This effort is driven by the desire of International Society for the Advancement of Cytometry (ISAC) members in SRLs to define and maintain standards of excellence in flow cytometry, and act as a repository for key elements of this information (e.g. example SOPs/training material, etc.). These best practices are not intended to define specifically how to implement these recommendations, but rather to establish minimal goals for an SRL to address in order to achieve excellence. It is hoped that once these best practices are established and implemented they will serve as a template from which similar practices can be defined for other types of SRLs. Identification of the need for best practices first occurred through discussions at the CYTO 2013 SRL Forum, with the most important areas for which best practices should be defined identified through several surveys and SRL track workshops as part of CYTO 2014. © 2016 International Society for Advancement of Cytometry.


Asunto(s)
Citometría de Flujo/normas , Laboratorios/normas , Guías de Práctica Clínica como Asunto/normas
10.
Eur J Clin Invest ; 44(8): 802-11, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25041433

RESUMEN

BACKGROUND: Uraemia and cardiovascular disease appear to be associated with an increased oxidative burden. One of the key players in the genesis of reactive oxygen species (ROS) is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Based on initial experiments demonstrating a decreased inhibitory effect on NADPH oxidase activity in the presence of plasma from patients with CKD-5D after dialysis compared with before dialysis, we investigated the effect of 48 known and commercially available uraemic retention solutes on the enzymatic activity of NADPH oxidase. METHODS: Mononuclear leucocytes isolated from buffy coats of healthy volunteers were isolated, lysed and incubated with NADH in the presence of plasma from healthy controls and patients with CKD-5D. Furthermore, the leucocytes were lysed and incubated in the presence of uraemic retention solute of interest and diphenyleneiodonium chloride (DPI), an inhibitor of NADPH oxidase. The effect on enzymatic activity of NADPH oxidase was quantified within an incubation time of 120 min. RESULTS: Thirty-nine of the 48 uraemic retention solutes tested had a significant decreasing effect on NADPH oxidase activity. Oxalate has been characterized as the strongest inhibitor of NADPH oxidase (90% of DPI inhibition). Surprisingly, none of the uraemic retention solutes we investigated was found to increase NADPH oxidase activity. Furthermore, plasma from patients with CKD-5D before dialysis caused significantly higher inhibitory effect on NADPH oxidase activity compared with plasma from healthy subjects. However, this effect was significantly decreased in plasma from patients with CKD-5D after dialysis. CONCLUSIONS: The results of this study show that uraemic retention solutes modulated the activity of the NADPH oxidase. The results of this study might be the basis for the development of inhibitors applicable as drug in the situation of increased oxidative stress.


Asunto(s)
Factores Biológicos/farmacología , NADPH Oxidasas/metabolismo , Insuficiencia Renal Crónica/enzimología , Uremia/enzimología , Adulto , Femenino , Voluntarios Sanos , Humanos , Leucocitos Mononucleares/enzimología , Masculino , Estrés Oxidativo/fisiología , Plasma/fisiología , Especies Reactivas de Oxígeno/farmacología , Diálisis Renal , Insuficiencia Renal Crónica/terapia
11.
STAR Protoc ; 5(2): 103038, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38678568

RESUMEN

Phenotypic and compositional changes of immune cells in cerebrospinal fluid (CSF) can be used as biomarkers to help diagnose and track disease activity for neuroinflammatory and neurodegenerative diseases. Here, we present a workflow to perform high-dimensional immune profiling at single-cell resolution using cytometry by time-of-flight (CyTOF) on cells isolated from the CSF of patients with neuroinflammation. We describe steps for sample collection and preparation, barcoding to allow for multiplexing, and downstream data analysis using R. For complete details on the use and execution of this protocol, please refer to Fernández-Zapata et al.1.


Asunto(s)
Citometría de Flujo , Enfermedades Neuroinflamatorias , Humanos , Citometría de Flujo/métodos , Enfermedades Neuroinflamatorias/líquido cefalorraquídeo , Enfermedades Neuroinflamatorias/inmunología , Análisis de la Célula Individual/métodos , Biomarcadores/líquido cefalorraquídeo , Líquido Cefalorraquídeo/citología , Líquido Cefalorraquídeo/inmunología
12.
Neuro Oncol ; 26(2): 279-294, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-37823709

RESUMEN

BACKGROUND: Neurologic immune-related adverse events (irAE-n) are rare but severe toxicities of immune checkpoint inhibitor (ICI) treatment. To overcome diagnostic and therapeutic challenges, a better mechanistic understanding of irAE-n is paramount. METHODS: In this observational cohort study, we collected serum and peripheral blood samples from 34 consecutive cancer patients with irAE-n (during acute illness) and 49 cancer control patients without irAE-n (pre- and on-ICI treatment, n = 44 without high-grade irAEs, n = 5 with high-grade nonneurologic irAEs). Patients received either anti-programmed cell death protein (PD)-1 or anti-PD ligand-1 monotherapy or anti-PD-1/anti-cytotoxic T-lymphocyte-associated protein-4 combination therapy. Most common cancers were melanoma, lung cancer, and hepatocellular carcinoma. Peripheral blood immune profiling was performed using 48-marker single-cell mass cytometry and a multiplex cytokine assay. RESULTS: During acute illness, patients with irAE-n presented higher frequencies of cluster of differentiation (CD)8+ effector memory type (EM-)1 and central memory (CM) T cells compared to controls without irAEs. Multiorgan immunotoxicities (neurologic + nonneurologic) were associated with higher CD8+ EM1 T cell counts. While there were no B cell changes in the overall cohort, we detected a marked decrease of IgD- CD11c+ CD21low and IgD- CD24+ CD21high B cells in a subgroup of patients with autoantibody-positive irAE-n. We further identified signatures indicative of enhanced chemotaxis and inflammation in irAE-n patients and discovered C-X-C motif chemokine ligand (CXCL)10 as a promising marker to diagnose high-grade immunotoxicities such as irAE-n. CONCLUSIONS: We demonstrate profound and partly subgroup-specific immune cell dysregulation in irAE-n patients, which may guide future biomarker development and targeted treatment approaches.


Asunto(s)
Neoplasias Pulmonares , Melanoma , Humanos , Enfermedad Aguda , Autoinmunidad , Ligandos , Estudios Retrospectivos
13.
Haematologica ; 98(1): 23-30, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22801968

RESUMEN

Rabbit antithymocyte globulin-Genzyme™ is used to prevent graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Common disadvantages of treatment are infectious complications. The effects of rabbit antithymocyte globulin-Genzyme™ on thymic function have not been well-studied. Multicolor flow cytometry was used to analyze the kinetics of conventional and regulatory T cells in adult patients treated (n=12) or not treated (n=8) with rabbit antithymocyte globulin-Genzyme™ during the first 6 months after allogeneic hematopoietic stem cell transplantation. Patients treated with rabbit antithymocyte globulin-Genzyme™ had almost undetectable levels of recent thymic emigrants (CD45RA(+)CD31(+)) of both conventional and regulatory CD4T cells throughout the 6 months after allogeneic hematopoietic stem cell transplantation whereas CD4(+)CD45RA-memory T cells were less affected, but their levels were also significantly lower than in patients not treated with rabbit antithymocyte globulin-Genzyme™. In vitro, rabbit antithymocyte globulin-Genzyme™ induced apoptosis and cytolysis of human thymocytes, and its cytotoxic effects were greater than those of rabbit antithymocyte globulin-Fresenius™. Rabbit antithymocyte globulin-Genzyme™ in combination with a conditioning regimen strongly impairs thymic recovery of both conventional and regulatory CD4(+) T cells. The sustained depletion of conventional and regulatory CD4(+)T cells carries a high risk of both infections and graft-versus-host disease. Our data indicate that patients treated with rabbit antithymocyte globulin-Genzyme™ could benefit from thymus-protective therapies and that trials comparing this product with other rabbit antithymocyte globulin preparations or lymphocyte-depleting compounds would be informative.


Asunto(s)
Suero Antilinfocítico/uso terapéutico , Trasplante de Células Madre Hematopoyéticas/métodos , Linfocitos T/inmunología , Timo/efectos de los fármacos , Timo/inmunología , Adulto , Anciano , Animales , Suero Antilinfocítico/efectos adversos , Recuento de Linfocito CD4/métodos , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Conejos , Trasplante Homólogo
14.
Stem Cell Res Ther ; 14(1): 296, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37840130

RESUMEN

BACKGROUND: Direct cardiac reprogramming is currently being investigated for the generation of cells with a true cardiomyocyte (CM) phenotype. Based on the original approach of cardiac transcription factor-induced reprogramming of fibroblasts into CM-like cells, various modifications of that strategy have been developed. However, they uniformly suffer from poor reprogramming efficacy and a lack of translational tools for target cell expansion and purification. Therefore, our group has developed a unique approach to generate proliferative cells with a pre-CM phenotype that can be expanded in vitro to yield substantial cell doses. METHODS: Cardiac fibroblasts were reprogrammed toward CM fate using lentiviral transduction of cardiac transcriptions factors (GATA4, MEF2C, TBX5, and MYOCD). The resulting cellular phenotype was analyzed by RNA sequencing and immunocytology. Live target cells were purified based on intracellular CM marker expression using molecular beacon technology and fluorescence-activated cell sorting. CM commitment was assessed using 5-azacytidine-based differentiation assays and the therapeutic effect was evaluated in a mouse model of acute myocardial infarction using echocardiography and histology. The cellular secretome was analyzed using mass spectrometry. RESULTS: We found that proliferative CM precursor-like cells were part of the phenotype spectrum arising during direct reprogramming of fibroblasts toward CMs. These induced CM precursors (iCMPs) expressed CPC- and CM-specific proteins and were selectable via hairpin-shaped oligonucleotide hybridization probes targeting Myh6/7-mRNA-expressing cells. After purification, iCMPs were capable of extensive expansion, with preserved phenotype when under ascorbic acid supplementation, and gave rise to CM-like cells with organized sarcomeres in differentiation assays. When transplanted into infarcted mouse hearts, iCMPs prevented CM loss, attenuated fibrotic scarring, and preserved ventricular function, which can in part be attributed to their substantial secretion of factors with documented beneficial effect on cardiac repair. CONCLUSIONS: Fibroblast reprogramming combined with molecular beacon-based cell selection yields an iCMP-like cell population with cardioprotective potential. Further studies are needed to elucidate mechanism-of-action and translational potential.


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Remodelación Ventricular , Proteínas de Dominio T Box/genética , Factores de Transcripción MEF2/genética , Infarto del Miocardio/terapia , Infarto del Miocardio/tratamiento farmacológico , Fibroblastos , Reprogramación Celular/genética
15.
Nat Commun ; 14(1): 7728, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007484

RESUMEN

Disease-modifying therapies (DMTs) are widely used in neuroimmunological diseases such as multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). Although these treatments are known to predispose patients to infections and affect their responses to vaccination, little is known about the impact of DMTs on the myeloid cell compartment. In this study, we use mass cytometry to examine DMT-associated changes in the innate immune system in untreated and treated patients with MS (n = 39) or NMOSD (n = 23). We also investigated the association between changes in myeloid cell phenotypes and longitudinal responsiveness to homologous primary, secondary, and tertiary SARS-CoV-2 mRNA vaccinations. Multiple DMT-associated myeloid cell clusters, in particular CD64+HLADRlow granulocytes, showed significant correlations with B and T cell responses induced by vaccination. Our findings suggest the potential role of myeloid cells in cellular and humoral responses following vaccination in DMT-treated patients with neuroimmunological diseases.


Asunto(s)
Esclerosis Múltiple , Neuromielitis Óptica , Humanos , Células Mieloides , Granulocitos , Células Progenitoras Mieloides , Vacunación , Esclerosis Múltiple/tratamiento farmacológico , Anticuerpos Antivirales
16.
Invest Radiol ; 57(10): 677-688, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35467573

RESUMEN

OBJECTIVES: Using a murine model of multiple sclerosis, we previously showed that repeated administration of gadopentetate dimeglumine led to retention of gadolinium (Gd) within cerebellar structures and that this process was enhanced with inflammation. This study aimed to compare the kinetics and retention profiles of Gd in inflamed and healthy brains after application of the macrocyclic Gd-based contrast agent (GBCA) gadobutrol or the linear GBCA gadopentetate. Moreover, potential Gd-induced neurotoxicity was investigated in living hippocampal slices ex vivo. MATERIALS AND METHODS: Mice at peak of experimental autoimmune encephalomyelitis (EAE; n = 29) and healthy control mice (HC; n = 24) were exposed to a cumulative dose of 20 mmol/kg bodyweight of either gadopentetate dimeglumine or gadobutrol (8 injections of 2.5 mmol/kg over 10 days). Magnetic resonance imaging (7 T) was performed at baseline as well as at day 1, 10, and 40 post final injection (pfi) of GBCAs. Mice were sacrificed after magnetic resonance imaging and brain and blood Gd content was assessed by laser ablation-inductively coupled plasma (ICP)-mass spectrometry (MS) and ICP-MS, respectively. In addition, using chronic organotypic hippocampal slice cultures, Gd-induced neurotoxicity was addressed in living brain tissue ex vivo, both under control or inflammatory (tumor necrosis factor α [TNF-α] at 50 ng/µL) conditions. RESULTS: Neuroinflammation promoted a significant decrease in T1 relaxation times after multiple injections of both GBCAs as shown by quantitative T1 mapping of EAE brains compared with HC. This corresponded to higher Gd retention within the EAE brains at 1, 10, and 40 days pfi as determined by laser ablation-ICP-MS. In inflamed cerebellum, in particular in the deep cerebellar nuclei (CN), elevated Gd retention was observed until day 40 after last gadopentetate application (CN: EAE vs HC, 55.06 ± 0.16 µM vs 30.44 ± 4.43 µM). In contrast, gadobutrol application led to a rather diffuse Gd content in the inflamed brains, which strongly diminished until day 40 (CN: EAE vs HC, 0.38 ± 0.08 µM vs 0.17 ± 0.03 µM). The analysis of cytotoxic effects of both GBCAs using living brain tissue revealed an elevated cell death rate after incubation with gadopentetate but not gadobutrol at 50 mM. The cytotoxic effect due to gadopentetate increased in the presence of the inflammatory mediator TNF-α (with vs without TNF-α, 3.15% ± 1.18% vs 2.17% ± 1.14%; P = 0.0345). CONCLUSIONS: In the EAE model, neuroinflammation promoted increased Gd retention in the brain for both GBCAs. Whereas in the inflamed brains, efficient clearance of macrocyclic gadobutrol during the investigated time period was observed, the Gd retention after application of linear gadopentetate persisted over the entire observational period. Gadopentetate but not gadubutrol appeared to be neurotoxic in an ex vivo paradigm of neuronal inflammation.


Asunto(s)
Gadolinio , Compuestos Organometálicos , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Quelantes , Medios de Contraste , Gadolinio DTPA , Inflamación/metabolismo , Imagen por Resonancia Magnética/métodos , Ratones , Factor de Necrosis Tumoral alfa/metabolismo
17.
Microbiome ; 10(1): 57, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379337

RESUMEN

BACKGROUND: Caloric restriction can delay the development of metabolic diseases ranging from insulin resistance to type 2 diabetes and is linked to both changes in the composition and metabolic function of the gut microbiota and immunological consequences. However, the interaction between dietary intake, the microbiome, and the immune system remains poorly described. RESULTS: We transplanted the gut microbiota from an obese female before (AdLib) and after (CalRes) an 8-week very-low-calorie diet (800 kcal/day) into germ-free mice. We used 16S rRNA sequencing to evaluate taxa with differential abundance between the AdLib- and CalRes-microbiota recipients and single-cell multidimensional mass cytometry to define immune signatures in murine colon, liver, and spleen. Recipients of the CalRes sample exhibited overall higher alpha diversity and restructuring of the gut microbiota with decreased abundance of several microbial taxa (e.g., Clostridium ramosum, Hungatella hathewayi, Alistipi obesi). Transplantation of CalRes-microbiota into mice decreased their body fat accumulation and improved glucose tolerance compared to AdLib-microbiota recipients. Finally, the CalRes-associated microbiota reduced the levels of intestinal effector memory CD8+ T cells, intestinal memory B cells, and hepatic effector memory CD4+ and CD8+ T cells. CONCLUSION: Caloric restriction shapes the gut microbiome which can improve metabolic health and may induce a shift towards the naïve T and B cell compartment and, thus, delay immune senescence. Understanding the role of the gut microbiome as mediator of beneficial effects of low calorie diets on inflammation and metabolism may enhance the development of new therapeutic treatment options for metabolic diseases. TRIAL REGISTRATION: NCT01105143 , "Effects of negative energy balance on muscle mass regulation," registered 16 April 2010. Video Abstract.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animales , Linfocitos T CD8-positivos , Restricción Calórica , Femenino , Microbioma Gastrointestinal/fisiología , Ratones , ARN Ribosómico 16S/genética
18.
Nat Commun ; 13(1): 7210, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36418303

RESUMEN

Myeloid cells are suggested as an important player in Alzheimer´s disease (AD). However, its continuum of phenotypic and functional changes across different body compartments and their use as a biomarker in AD remains elusive. Here, we perform multiple state-of-the-art analyses to phenotypically and metabolically characterize immune cells between peripheral blood (n = 117), cerebrospinal fluid (CSF, n = 117), choroid plexus (CP, n = 13) and brain parenchyma (n = 13). We find that CSF cells increase expression of markers involved in inflammation, phagocytosis, and metabolism. Changes in phenotype of myeloid cells from AD patients are more pronounced in CP and brain parenchyma and upon in vitro stimulation, suggesting that AD-myeloid cells are more vulnerable to environmental changes. Our findings underscore the importance of myeloid cells in AD and the detailed characterization across body compartments may serve as a resource for future studies focusing on the assessment of these cells as biomarkers in AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Plexo Coroideo/metabolismo , Células Mieloides/metabolismo , Células Progenitoras Mieloides/metabolismo , Biomarcadores/metabolismo , Fenotipo
19.
EMBO Mol Med ; 14(9): e15687, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35919953

RESUMEN

Inflammatory bowel disease (IBD) is characterized by dysregulated intestinal immune responses. Using mass cytometry (CyTOF) to analyze the immune cell composition in the lamina propria (LP) of patients with ulcerative colitis (UC) and Crohn's disease (CD), we observed an enrichment of CD4+ effector T cells producing IL-17A and TNF, CD8+ T cells producing IFNγ, T regulatory (Treg) cells, and innate lymphoid cells (ILC). The function of these immune cells is regulated by store-operated Ca2+ entry (SOCE), which results from the opening of Ca2+ release-activated Ca2+ (CRAC) channels formed by ORAI and STIM proteins. We observed that the pharmacologic inhibition of SOCE attenuated the production of proinflammatory cytokines including IL-2, IL-4, IL-6, IL-17A, TNF, and IFNγ by human colonic T cells and ILCs, reduced the production of IL-6 by B cells and the production of IFNγ by myeloid cells, but had no effect on the viability, differentiation, and function of intestinal epithelial cells. T cell-specific deletion of CRAC channel genes in mice showed that Orai1, Stim1, and Stim2-deficient T cells have quantitatively distinct defects in SOCE, which correlate with gradually more pronounced impairment of cytokine production by Th1 and Th17 cells and the severity of IBD. Moreover, the pharmacologic inhibition of SOCE with a selective CRAC channel inhibitor attenuated IBD severity and colitogenic T cell function in mice. Our data indicate that SOCE inhibition may be a suitable new approach for the treatment of IBD.


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio , Enfermedades Inflamatorias del Intestino , Animales , Linfocitos T CD8-positivos/metabolismo , Calcio/metabolismo , Canales de Calcio/metabolismo , Humanos , Inmunidad Innata , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Ratones , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/genética , Células Th17/metabolismo
20.
Science ; 375(6582): 782-787, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35076281

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Beta variant of concern (VOC) resists neutralization by major classes of antibodies from COVID-19 patients and vaccinated individuals. In this study, serum of Beta-infected patients revealed reduced cross-neutralization of wild-type virus. From these patients, we isolated Beta-specific and cross-reactive receptor-binding domain (RBD) antibodies. The Beta-specificity results from recruitment of VOC-specific clonotypes and accommodation of mutations present in Beta and Omicron into a major antibody class that is normally sensitive to these mutations. The Beta-elicited cross-reactive antibodies share genetic and structural features with wild type-elicited antibodies, including a public VH1-58 clonotype that targets the RBD ridge. These findings advance our understanding of the antibody response to SARS-CoV-2 shaped by antigenic drift, with implications for design of next-generation vaccines and therapeutics.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Reacciones Cruzadas , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/metabolismo , Deriva y Cambio Antigénico , COVID-19/virología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Unión Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA