Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 20(5): e1012279, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38814988

RESUMEN

The influenza A virus (IAV) consists of 8 single-stranded, negative-sense viral RNA (vRNA) segments. After infection, vRNA is transcribed, replicated, and wrapped by viral nucleoprotein (NP) to form viral ribonucleoprotein (vRNP). The transcription, replication, and nuclear export of the viral genome are regulated by the IAV protein, NS2, which is translated from spliced mRNA transcribed from viral NS vRNA. This splicing is inefficient, explaining why NS2 is present in low abundance after IAV infection. The levels of NS2 and its subsequent accumulation are thought to influence viral RNA replication and vRNP nuclear export. Here we show that NS2 is ubiquitinated at the K64 and K88 residues by K48-linked and K63-linked polyubiquitin (polyUb) chains, leading to the degradation of NS2 by the proteasome. Additionally, we show that a host deubiquitinase, OTUB1, can remove polyUb chains conjugated to NS2, thereby stabilizing NS2. Accordingly, knock down of OTUB1 by siRNA reduces the nuclear export of vRNP, and reduces the overall production of IAV. These results collectively demonstrate that the levels of NS2 in IAV-infected cells are regulated by a ubiquitination-deubiquitination system involving OTUB1 that is necessary for optimal IAV replication.


Asunto(s)
Cisteína Endopeptidasas , Virus de la Influenza A , Proteínas no Estructurales Virales , Replicación Viral , Animales , Perros , Humanos , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Enzimas Desubicuitinizantes/metabolismo , Células HEK293 , Virus de la Influenza A/metabolismo , Gripe Humana/metabolismo , Gripe Humana/virología , ARN Viral/metabolismo , ARN Viral/genética , Ubiquitinación , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Replicación Viral/fisiología , Línea Celular , Células Vero , Chlorocebus aethiops
2.
J Cell Biochem ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38720641

RESUMEN

Enterovirus A71 (EV-A71) belongs to the genus Enterovirus of the Picornaviridae family and often causes outbreaks in Asia. EV-A71 infection usually causes hand, foot, and mouth disease and can even affect the central nervous system, causing neurological complications or death. The 5'-untranslated region (5'-UTR) of EV-A71 contains an internal ribosome entry site (IRES) that is responsible for the translation of viral proteins. IRES-transacting factors can interact with the EV-A71 5'-UTR to regulate IRES activity. Heterogeneous nuclear ribonucleoprotein (hnRNP) A3 is a member of the hnRNP A/B protein family of RNA-binding proteins and is involved in RNA transport and modification. We found that hnRNP A3 knockdown promoted the replication of EV-A71 in neural calls. Conversely, increasing the expression of hnRNP A3 within cells inhibits the growth of EV-A71. HnRNP A3 can bind to the EV-A71 5'-UTR, and knockdown of hnRNP A3 enhances the luciferase activity of the EV-A71 5'-UTR IRES. The localization of hnRNP A3 shifts from the nucleus to the cytoplasm of infected cells during viral infection. Additionally, EV-A71 infection can increase the protein expression of hnRNP A3, and the protein level is correlated with efficient viral growth. Based on these findings, we concluded that hnRNP A3 plays a negative regulatory role in EV-A71 replication within neural cells.

3.
J Clin Immunol ; 42(3): 606-617, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35040013

RESUMEN

PURPOSE: Enterovirus A71 (EV71) causes a broad spectrum of childhood diseases, ranging from asymptomatic infection or self-limited hand-foot-and-mouth disease (HFMD) to life-threatening encephalitis. The molecular mechanisms underlying these different clinical presentations remain unknown. We hypothesized that EV71 encephalitis in children might reflect an intrinsic host single-gene defect of antiviral immunity. We searched for mutations in the toll-like receptor 3 (TLR3) gene. Such mutations have already been identified in children with herpes simplex virus encephalitis (HSE). METHODS: We sequenced TLR3 and assessed the impact of the mutations identified. We tested dermal fibroblasts from a patient with EV71 encephalitis and a TLR3 mutation and other patients with known genetic defects of TLR3 or related genes, assessing the response of these cells to TLR3 agonist poly(I:C) stimulation and EV71 infection. RESULTS: Three children with EV71 encephalitis were heterozygous for rare mutations-TLR3 W769X, E211K, and R867Q-all of which were shown to affect TLR3 function. Furthermore, fibroblasts from the patient heterozygous for the W769X mutation displayed an impaired, but not abolished, response to poly(I:C). We found that TLR3-deficient and TLR3-heterozygous W769X fibroblasts were highly susceptible to EV71 infection. CONCLUSIONS: Autosomal dominant TLR3 deficiency may underlie severe EV71 infection with encephalitis. Human TLR3 immunity is essential to protect the central nervous system against HSV-1 and EV71. Children with severe EV71 infections, such as encephalitis in particular, should be tested for inborn errors of TLR3 immunity.


Asunto(s)
Encefalitis por Herpes Simple , Encefalitis Viral , Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Células Cultivadas , Niño , Encefalitis por Herpes Simple/diagnóstico , Encefalitis por Herpes Simple/genética , Encefalitis Viral/diagnóstico , Encefalitis Viral/genética , Enterovirus Humano A/genética , Infecciones por Enterovirus/diagnóstico , Infecciones por Enterovirus/genética , Humanos , Poli I-C , Receptor Toll-Like 3/genética
4.
J Virol ; 95(20): e0023121, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34379499

RESUMEN

The NS1 protein of the influenza A virus plays a critical role in regulating several biological processes in cells, including the type I interferon (IFN) response. We previously profiled the cellular factors that interact with the NS1 protein of influenza A virus and found that the NS1 protein interacts with proteins involved in RNA splicing/processing, cell cycle regulation, and protein targeting processes, including 14-3-3ε. Since 14-3-3ε plays an important role in retinoic acid-inducible gene I (RIG-I) translocation to mitochondrial antiviral-signaling protein (MAVS) to activate type I IFN expression, the interaction of the NS1 and 14-3-3ε proteins may prevent the RIG-I-mediated IFN response. In this study, we confirmed that the 14-3-3ε protein interacts with the N-terminal domain of the NS1 protein and that the NS1 protein inhibits RIG-I-mediated IFN-ß promoter activation in 14-3-3ε-overexpressing cells. In addition, our results showed that knocking down 14-3-3ε can reduce IFN-ß expression elicited by influenza A virus and enhance viral replication. Furthermore, we found that threonine in the 49th amino acid position of the NS1 protein plays a role in the interaction with 14-3-3ε. Influenza A virus expressing C terminus-truncated NS1 with a T49A mutation dramatically increases IFN-ß mRNA in infected cells and causes slower replication than that of virus without the T-to-A mutation. Collectively, this study demonstrates that 14-3-3ε is involved in influenza A virus-initiated IFN-ß expression and that the interaction of the NS1 protein and 14-3-3ε may be one of the mechanisms for inhibiting type I IFN activation during influenza A virus infection. IMPORTANCE Influenza A virus is an important human pathogen causing severe respiratory disease. The virus has evolved several strategies to dysregulate the innate immune response and facilitate its replication. We demonstrate that the NS1 protein of influenza A virus interacts with the cellular chaperone protein 14-3-3ε, which plays a critical role in retinoic acid-inducible gene I (RIG-I) translocation that induces type I interferon (IFN) expression, and that NS1 protein prevents RIG-I translocation to the mitochondrial membrane. The interaction site for 14-3-3ε is the RNA-binding domain (RBD) of the NS1 protein. Therefore, this research elucidates a novel mechanism by which the NS1 RBD mediates IFN-ß suppression to facilitate influenza A viral replication. Additionally, the findings reveal the antiviral role of 14-3-3ε during influenza A virus infection.


Asunto(s)
Proteínas 14-3-3/inmunología , Gripe Humana/inmunología , Interferón beta/metabolismo , Proteínas 14-3-3/metabolismo , Línea Celular Tumoral , Proteína 58 DEAD Box/metabolismo , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata/inmunología , Virus de la Influenza A/metabolismo , Gripe Humana/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Interferón beta/fisiología , Regiones Promotoras Genéticas/genética , Procesamiento Proteico-Postraduccional , ARN Viral/genética , Receptores Inmunológicos/metabolismo , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética
5.
RNA Biol ; 18(5): 796-808, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33406999

RESUMEN

The pathogenic human enterovirus EV-A71 has raised serious public health concerns. A hallmark of EV-A71 infection is the distortion of host transcriptomes in favour of viral replication. While high-throughput approaches have been exploited to dissect these gene dysregulations, they do not fully capture molecular perturbations at the single-cell level and in a physiologically relevant context. In this study, we applied a single-cell RNA sequencing approach on infected differentiated enterocyte cells (C2BBe1), which model the gastrointestinal epithelium targeted initially by EV-A71. Our single-cell analysis of EV-A71-infected culture provided several lines of illuminating observations: 1) This systems approach demonstrated extensive cell-to-cell variation in a single culture upon viral infection and delineated transcriptomic differences between the EV-A71-infected and bystander cells. 2) By analysing expression profiles of known EV-A71 receptors and entry facilitation factors, we found that ANXA2 was closely correlated in expression with the viral RNA in the infected population, supporting its role in EV-A71 entry in the enteric cells. 3) We further catalogued dysregulated lncRNAs elicited by EV-A71 infection and demonstrated the functional implication of lncRNA CYTOR in promoting EV-A71 replication. Viewed together, our single-cell transcriptomic analysis illustrated at the single-cell resolution the heterogeneity of host susceptibility to EV-A71 and revealed the involvement of lncRNAs in host antiviral response.


Asunto(s)
Enterovirus Humano A/patogenicidad , Interacciones Huésped-Patógeno/genética , Transcriptoma , Células Cultivadas , Enterocitos/metabolismo , Enterocitos/patología , Enterocitos/virología , Enterovirus Humano A/genética , Enterovirus Humano A/inmunología , Infecciones por Enterovirus/genética , Infecciones por Enterovirus/inmunología , Infecciones por Enterovirus/patología , Infecciones por Enterovirus/virología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/virología , ARN Largo no Codificante/genética , Análisis de la Célula Individual , Replicación Viral/genética
6.
J Virol ; 93(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30814289

RESUMEN

Infection by enteroviruses can cause severe neurological complications in humans. The interactions between the enteroviral and host proteins may facilitate the virus replication and be involved in the pathogenicity of infected individuals. It has been shown that human enteroviruses possess various mechanisms to suppress host innate immune responses in infected cells. Previous studies showed that infection by enterovirus 71 (EV71) causes the degradation of MDA5, which is a critical cytoplasmic pathogen sensor in the recognition of picornaviruses for initiating transcription of type I interferons. In the present study, we demonstrated that the RNA-dependent RNA polymerase (RdRP; also denoted 3Dpol) encoded by EV71 interacts with the caspase activation and recruitment domains (CARDs) of MDA5 and plays a role in the inhibition of MDA5-mediated beta interferon (IFN-ß) promoter activation and mRNA expression. In addition, we found that the 3Dpol protein encoded by coxsackievirus B3 also interacted with MDA5 and downregulated the antiviral signaling initiated by MDA5. These findings indicate that enteroviral RdRP may function as an antagonist against the host antiviral innate immune response.IMPORTANCE Infection by enteroviruses causes severe neurological complications in humans. Human enteroviruses possess various mechanisms to suppress the host type I interferon (IFN) response in infected cells to establish viral replication. In the present study, we found that the enteroviral 3Dpol protein (or RdRP), which is a viral RNA-dependent RNA polymerase for replicating viral RNA, plays a role in the inhibition of MDA5-mediated beta interferon (IFN-ß) promoter activation. We further demonstrated that enteroviral 3Dpol protein interacts with the caspase activation and recruitment domains (CARDs) of MDA5. These findings indicate that enteroviral RdRP functions as an antagonist against the host antiviral response.


Asunto(s)
Enterovirus Humano A/metabolismo , Helicasa Inducida por Interferón IFIH1/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Dominio de Reclutamiento y Activación de Caspasas/genética , Dominio de Reclutamiento y Activación de Caspasas/fisiología , Enterovirus/genética , Enterovirus/metabolismo , Enterovirus Humano A/genética , Enterovirus Humano B/metabolismo , Infecciones por Enterovirus/virología , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Interferón Tipo I/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Interferón beta/metabolismo , Interferones/metabolismo , Interferones/fisiología , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Transducción de Señal , Replicación Viral
7.
RNA Biol ; 17(4): 608-622, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32009553

RESUMEN

Enteroviruses, which may cause neurological complications, have become a public health threat worldwide in recent years. Interactions between cellular proteins and enteroviral proteins could interfere with cellular biological processes to facilitate viral replication in infected cells. Enteroviral RNA-dependent RNA polymerase (RdRP), known as 3D protein, mainly functions as a replicase for viral RNA synthesis in infected cells. However, the 3D protein encoded by enterovirus A71 (EV-A71) could also interact with several cellular proteins to regulate cellular events and responses during infection. To globally investigate the functions of the EV-A71 3D protein in regulating biological processes in host cells, we performed immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify host proteins that may associate with the 3D protein. We found that the 3D protein interacts with factors involved in translation-related biological processes, including ribosomal proteins. In addition, polysome profiling analysis showed that the 3D protein cosediments with small and large subunits of ribosomes. We further discovered that the EV-A71 3D protein could enhance EV-A71 internal ribosome entry site (IRES)-dependent translation as well as cap-dependent translation. Collectively, this research demonstrated that the RNA polymerase encoded by EV-A71 could join a functional ribosomal complex and positively regulate viral and host translation.


Asunto(s)
Enterovirus Humano A/enzimología , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Línea Celular , Cromatografía Liquida , Células HEK293 , Células HeLa , Humanos , Sitios Internos de Entrada al Ribosoma , Biosíntesis de Proteínas , Espectrometría de Masas en Tándem , Proteínas Virales/metabolismo
8.
RNA Biol ; 16(9): 1263-1274, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31135270

RESUMEN

The innate immune system is the frontline host protection against pathogens. Effective antiviral immunity is elicited upon recognition of viral RNAs by the host pattern recognition receptors. One of the major viral RNA sensors is retinoic acid inducible gene-1, which triggers the production of interferons (IFNs). In turn, this protective response requires another viral sensor and immunity factor interferon-inducible protein kinase RNA activator (PACT/PRKRA). Here, we report the identification and characterization of a novel antisense PACT gene that expresses a non-coding RNA in a convergent and interferon-inducible manner. Publicly available gene structure and expression data revealed that this gene, that we termed ASPACT, overlaps with the 3' -end of the PACT locus and is highly expressed during viral infection. Our results confirm the IFN-ß-inducibility of ASPACT, which is dependent on STAT-1/2. We further discovered that downregulation of ASPACT impacts both the expression and localization of the PACT transcript. At the transcription level, ChIP and ChIRP assays demonstrated that the ASPACT non-coding RNA occupies distinct chromatin regions of PACT gene and is important for promoter recruitment of the epigenetic silencer HDAC1. In parallel, ASPACT was also found to mediate nuclear retention of the PACT mRNA via direct RNA-RNA interaction, as revealed by RNA antisense purification assay. In summary, our results support the model that the non-coding RNA ASPACT acts as a negative regulator of PACT at multiple levels, and reveal a novel regulator of the viral counteractive response.


Asunto(s)
ARN sin Sentido/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Núcleo Celular/metabolismo , Epigénesis Genética , Células HEK293 , Células HeLa , Histona Desacetilasa 1/metabolismo , Humanos , Inmunidad Innata , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Transcripción Genética
9.
J Proteome Res ; 17(4): 1474-1484, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29558158

RESUMEN

Influenza A virus infections can result in severe respiratory diseases. The H7N9 subtype of avian influenza A virus has been transmitted to humans and caused severe disease and death. Nonstructural protein 1 (NS1) of influenza A virus is a virulence determinant during viral infection. To elucidate the functions of the NS1 encoded by influenza A H7N9 virus (H7N9 NS1), interaction partners of H7N9 NS1 in human cells were identified with immunoprecipitation followed by SDS-PAGE coupled with liquid chromatography-tandem mass spectrometry (GeLC-MS/MS). We identified 36 cellular proteins as the interacting partners of the H7N9 NS1, and they are involved in RNA processing, mRNA splicing via spliceosome, and the mRNA surveillance pathway. Two of the interacting partners, cleavage and polyadenylation specificity factor subunit 2 (CPSF2) and CPSF7, were confirmed to interact with H7N9 NS1 using coimmunoprecipitation and immunoblotting based on the previous finding that the two proteins are involved in pre-mRNA polyadenylation machinery. Furthermore, we illustrate that overexpression of H7N9 NS1, as well as infection by the influenza A H7N9 virus, interfered with pre-mRNA polyadenylation in host cells. This study comprehensively profiled the interactome of H7N9 NS1 in host cells, and the results demonstrate a novel endotype for H7N9 NS1 in inhibiting host mRNA maturation.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/química , ARN Mensajero/antagonistas & inhibidores , Proteínas no Estructurales Virales/farmacología , Animales , Factor de Especificidad de Desdoblamiento y Poliadenilación , Interacciones Microbiota-Huesped , Humanos , Immunoblotting , Inmunoprecipitación , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Unión Proteica , Factores de Escisión y Poliadenilación de ARNm
10.
Biomed Microdevices ; 20(4): 90, 2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30350219

RESUMEN

Elimination of serious side effects is a desired feature of cancer therapy. Alternating electric field treatment is one approach to the non-invasive treatment of cancer. The efficacy and safety of this novel therapy are confirmed for the treatment of glioblastoma multiforme. In the current study, we co-cultured cancer cells and normal cells to investigate the selectivity and chemosensitivity enhancement of an electric field treatment. Cancer cells (cell line: HeLa and Huh7) and fibroblasts (cell line: HEL299) were cultured in an in-house-developed cell culture device embedded with stimulating electrodes. A low-intensity alternating electric field was applied to the culture. The field significantly induced proliferation arrest of the cancer cells, while had limited influence on the fibroblasts. Moreover, in combination with the anti-cancer drug, damage to the cancer cells was enhanced by the electric field. Thus, a lower dosage of the drug could be applied to achieve the same treatment effectiveness. This study provides evidence that low-intensity electric field treatment selectively induced proliferation arrest and enhanced the chemosensitivity of the cancer cells. This electro-chemotherapy could be developed and applied as a regional cancer therapy with minimal side effects.


Asunto(s)
Terapia por Estimulación Eléctrica/instrumentación , Glioblastoma/patología , Proliferación Celular , Electrodos , Glioblastoma/terapia , Células HeLa , Humanos
12.
J Virol ; 90(9): 4696-4705, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26912617

RESUMEN

UNLABELLED: The NS1 protein encoded by influenza A virus antagonizes the interferon response through various mechanisms, including blocking cellular mRNA maturation by binding the cellular CPSF30 3' end processing factor and/or suppressing the activation of interferon regulatory factor 3 (IRF3). In the present study, we identified two truncated NS1 proteins that are translated from internal AUGs at positions 235 and 241 of the NS1 open reading frame. We analyzed the cellular localization and function of the N-truncated NS1 proteins encoded by two influenza A virus strains, Udorn/72/H3N2 (Ud) and Puerto Rico/8/34/H1N1 (PR8). The NS1 protein of PR8, but not Ud, inhibits the activation of IRF3, whereas the NS1 protein of Ud, but not PR8, binds CPSF30. The truncated PR8 NS1 proteins are localized in the cytoplasm, whereas the full-length PR8 NS1 protein is localized in the nucleus. The infection of cells with a PR8 virus expressing an NS1 protein containing mutations of the two in-frame AUGs results in both the absence of truncated NS1 proteins and the reduced inhibition of activation of IRF3 and beta interferon (IFN-ß) transcription. The expression of the truncated PR8 NS1 protein by itself enhances the inhibition of the activation of IRF3 and IFN-ß transcription in Ud virus-infected cells. These results demonstrate that truncated PR8 NS1 proteins contribute to the inhibition of activation of this innate immune response. In contrast, the N-truncated NS1 proteins of the Ud strain, like the full-length NS1 protein, are localized in the nucleus, and mutation of the two in-frame AUGs has no effect on the activation of IRF3 and IFN-ß transcription. IMPORTANCE: Influenza A virus causes pandemics and annual epidemics in the human population. The viral NS1 protein plays a critical role in suppressing type I interferon expression. In the present study, we identified two novel truncated NS1 proteins that are translated from the second and third in-frame AUG codons in the NS1 open reading frame. The N-terminally truncated NS1 encoded by the H1N1 PR8 strain of influenza virus that suppresses IRF3 activation is localized primarily in the cytoplasm. We demonstrate that this truncated NS1 protein by itself enhances this suppression, demonstrating that some strains of influenza A virus express truncated forms of the NS1 protein that function in the inhibition of cytoplasmic antiviral events.


Asunto(s)
Virus de la Influenza A/fisiología , Factor 3 Regulador del Interferón/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Células Cultivadas , Codón Iniciador , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Humanos , Gripe Humana/metabolismo , Gripe Humana/virología , Interferón beta/genética , Ratones , Mutación , Sistemas de Lectura Abierta , Biosíntesis de Proteínas , Transporte de Proteínas , Transcripción Genética , Proteínas no Estructurales Virales/química
13.
Proteomics ; 16(17): 2351-62, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27291656

RESUMEN

Enterovirus 71 (EV71), a single-stranded RNA virus, is one of the most serious neurotropic pathogens in the Asia-Pacific region. Through interactions with host proteins, the 5' untranslated region (5'UTR) of EV71 is important for viral replication. To gain a protein profile that interact with the EV71 5'UTR in neuronal cells, we performed a biotinylated RNA-protein pull-down assay in conjunction with LC-MS/MS analysis. A total of 109 proteins were detected and subjected to Database for Annotation, Visualization and Integrated Discovery (DAVID) analyses. These proteins were found to be highly correlated with biological processes including RNA processing/splicing, epidermal cell differentiation, and protein folding. A protein-protein interaction network was constructed using the STRING online database to illustrate the interactions of those proteins that are mainly involved in RNA processing/splicing or protein folding. Moreover, we confirmed that the far-upstream element binding protein 3 (FBP3) was able to bind to the EV71 5'UTR. The redistribution of FBP3 in subcellular compartments was observed after EV71 infection, and the decreased expression of FBP3 in host neuronal cells markedly inhibited viral replication. Our results reveal various host proteins that potentially interact with the EV71 5'UTR in neuronal cells, and we found that FBP3 could serve as a positive regulator in host cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Enterovirus Humano A/fisiología , Infecciones por Enterovirus/metabolismo , Neuronas/virología , ARN Viral/metabolismo , Factores de Transcripción/metabolismo , Replicación Viral , Regiones no Traducidas 5' , Línea Celular , Enterovirus Humano A/genética , Infecciones por Enterovirus/patología , Humanos , Neuronas/metabolismo , Neuronas/patología , ARN Viral/genética
14.
J Proteome Res ; 15(5): 1639-48, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-27096427

RESUMEN

Influenza A virus, which can cause severe respiratory illnesses in infected individuals, is responsible for worldwide human pandemics. The NS1 protein encoded by this virus plays a crucial role in regulating the host antiviral response through various mechanisms. In addition, it has been reported that NS1 can modulate cellular pre-mRNA splicing events. To investigate the biological processes potentially affected by the NS1 protein in host cells, NS1-associated protein complexes in human cells were identified using coimmunoprecipitation combined with GeLC-MS/MS. By employing software to build biological process and protein-protein interaction networks, NS1-interacting cellular proteins were found to be related to RNA splicing/processing, cell cycle, and protein folding/targeting cellular processes. By monitoring spliced and unspliced RNAs of a reporter plasmid, we further validated that NS1 can interfere with cellular pre-mRNA splicing. One of the identified proteins, pre-mRNA-processing factor 19 (PRP19), was confirmed to interact with the NS1 protein in influenza A virus-infected cells. Importantly, depletion of PRP19 in host cells reduced replication of influenza A virus. In summary, the interactome of influenza A virus NS1 in host cells was comprehensively profiled, and our findings reveal a novel regulatory role for PRP19 in viral replication.


Asunto(s)
Enzimas Reparadoras del ADN/fisiología , Interacciones Huésped-Patógeno , Subtipo H1N1 del Virus de la Influenza A/química , Proteínas Nucleares/fisiología , Proteómica/métodos , Factores de Empalme de ARN/fisiología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Cromatografía Liquida , Humanos , Inmunoprecipitación , Subtipo H1N1 del Virus de la Influenza A/fisiología , Espectrometría de Masas en Tándem , Proteínas no Estructurales Virales/análisis
15.
PLoS Pathog ; 10(6): e1004199, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24968230

RESUMEN

The primary role of cytoplasmic viral RNA-dependent RNA polymerase (RdRp) is viral genome replication in the cellular cytoplasm. However, picornaviral RdRp denoted 3D polymerase (3D(pol)) also enters the host nucleus, where its function remains unclear. In this study, we describe a novel mechanism of viral attack in which 3D(pol) enters the nucleus through the nuclear localization signal (NLS) and targets the pre-mRNA processing factor 8 (Prp8) to block pre-mRNA splicing and mRNA synthesis. The fingers domain of 3D(pol) associates with the C-terminal region of Prp8, which contains the Jab1/MPN domain, and interferes in the second catalytic step, resulting in the accumulation of the lariat form of the splicing intermediate. Endogenous pre-mRNAs trapped by the Prp8-3D(pol) complex in enterovirus-infected cells were identified and classed into groups associated with cell growth, proliferation, and differentiation. Our results suggest that picornaviral RdRp disrupts pre-mRNA splicing processes, that differs from viral protease shutting off cellular transcription and translation which contributes to the pathogenesis of viral infection.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/enzimología , Enterovirus Humano A/metabolismo , Empalme del ARN , Proteínas de Unión al ARN/antagonistas & inhibidores , ADN Polimerasa Dirigida por ARN/metabolismo , Proteínas Virales/metabolismo , Línea Celular , Núcleo Celular/virología , Citoplasma/metabolismo , Citoplasma/virología , Enterovirus/metabolismo , Enterovirus/patogenicidad , Enterovirus Humano A/patogenicidad , Humanos , Señales de Localización Nuclear , Poliovirus/metabolismo , Poliovirus/patogenicidad , Biosíntesis de Proteínas , Dominios y Motivos de Interacción de Proteínas , Precursores del ARN/antagonistas & inhibidores , Precursores del ARN/metabolismo , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , ADN Polimerasa Dirigida por ARN/química , ADN Polimerasa Dirigida por ARN/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rhinovirus/metabolismo , Rhinovirus/patogenicidad , Especificidad de la Especie , Transcripción Genética , Carga Viral , Proteínas Virales/química , Proteínas Virales/genética , Virulencia
16.
Nucleic Acids Res ; 42(20): 12789-805, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25352551

RESUMEN

The roles of virus-derived small RNAs (vsRNAs) have been studied in plants and insects. However, the generation and function of small RNAs from cytoplasmic RNA viruses in mammalian cells remain unexplored. This study describes four vsRNAs that were detected in enterovirus 71-infected cells using next-generation sequencing and northern blots. Viral infection produced substantial levels (>10(5) copy numbers per cell) of vsRNA1, one of the four vsRNAs. We also demonstrated that Dicer is involved in vsRNA1 generation in infected cells. vsRNA1 overexpression inhibited viral translation and internal ribosomal entry site (IRES) activity in infected cells. Conversely, blocking vsRNA1 enhanced viral yield and viral protein synthesis. We also present evidence that vsRNA1 targets stem-loop II of the viral 5' untranslated region and inhibits the activity of the IRES through this sequence-specific targeting. Our study demonstrates the ability of a cytoplasmic RNA virus to generate functional vsRNA in mammalian cells. In addition, we also demonstrate a potential novel mechanism for a positive-stranded RNA virus to regulate viral translation: generating a vsRNA that targets the IRES.


Asunto(s)
Regiones no Traducidas 5' , Enterovirus Humano A/genética , Regulación Viral de la Expresión Génica , Biosíntesis de Proteínas , ARN Pequeño no Traducido/metabolismo , ARN Viral/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Humanos , Ribonucleasa III/metabolismo , Proteínas Virales/biosíntesis
17.
J Proteome Res ; 14(4): 1818-30, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25785312

RESUMEN

Enterovirus 71 (EV71) is a human enterovirus that has seriously affected the Asia-Pacific area for the past two decades. EV71 infection can result in mild hand-foot-and-mouth disease and herpangina and may occasionally lead to severe neurological complications in children. However, the specific biological processes that become altered during EV71 infection remain unclear. To further explore host responses upon EV71 infection, we identified proteins differentially expressed in EV71-infected human glioblastoma SF268 cells using isobaric mass tag (iTRAQ) labeling coupled with multidimensional liquid chromatography-mass spectrometry (LC-MS/MS). Network analysis of proteins altered in cells infected with EV71 revealed that the changed biological processes are related to protein and ion transport, regulation of protein degradation, and homeostatic processes. We confirmed that the levels of NEDD4L and PSMF1 were increased and reduced, respectively, in EV71-infected cells compared to mock-infected control cells. To determine the physiological relevance of our findings, we investigated the consequences of EV71 infection in cells with NEDD4L or PSMF1 depletion. We found that the depletion of NEDD4L significantly reduced the replication of EV71, whereas PSMF1 knockdown enhanced EV71 replication. Collectively, our findings provide the first evidence of proteome-wide dysregulation by EV71 infection and suggest a novel role for the host protein NEDD4L in the replication of this virus.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Enterovirus Humano A/fisiología , Infecciones por Enterovirus/fisiopatología , Regulación de la Expresión Génica/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Replicación Viral/fisiología , Línea Celular Tumoral , Cromatografía Liquida , Biología Computacional , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Immunoblotting , Ubiquitina-Proteína Ligasas Nedd4 , Complejo de la Endopetidasa Proteasomal , Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en Tándem
18.
J Biomed Sci ; 21: 99, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25407417

RESUMEN

BACKGROUND: Highly pathogenic influenza viruses cause high levels of morbidity, including excessive infiltration of leukocytes into the lungs, high viral loads and a cytokine storm. However, the details of how these pathological features unfold in severe influenza infections remain unclear. Accumulation of Gr1 + CD11b + myeloid cells has been observed in highly pathogenic influenza infections but it is not clear how and why they accumulate in the severely inflamed lung. In this study, we selected this cell population as a target to investigate the extreme inflammatory response during severe influenza infection. RESULTS: We established H1N1 IAV-infected mouse models using three viruses of varying pathogenicity and noted the accumulation of a defined Gr1 + CD11b + myeloid population correlating with the pathogenicity. Herein, we reported that CCR2+ inflammatory monocytes are the major cell compartments in this population. Of note, impaired clearance of the high pathogenicity virus prolonged IFN expression, leading to CCR2+ inflammatory monocytes amplifying their own recruitment via an interferon-α/ß receptor 1 (IFNAR1)-triggered chemokine loop. Blockage of IFNAR1-triggered signaling or inhibition of viral replication by Oseltamivir significantly suppresses the expression of CCR2 ligands and reduced the influx of CCR2+ inflammatory monocytes. Furthermore, trafficking of CCR2+ inflammatory monocytes from the bone marrow to the lung was evidenced by a CCR2-dependent chemotaxis. Importantly, leukocyte infiltration, cytokine storm and expression of iNOS were significantly reduced in CCR2-/- mice lacking infiltrating CCR2+ inflammatory monocytes, enhancing the survival of the infected mice. CONCLUSIONS: Our results indicated that uncontrolled viral replication leads to excessive production of inflammatory innate immune responses by accumulating CCR2+ inflammatory monocytes, which contribute to the fatal outcomes of high pathogenicity virus infections.


Asunto(s)
Quimiocinas/metabolismo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/fisiopatología , Infecciones por Orthomyxoviridae/fisiopatología , Receptor de Interferón alfa y beta/genética , Animales , Antivirales/farmacología , Modelos Animales de Enfermedad , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/virología , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Infecciones por Orthomyxoviridae/virología , Oseltamivir/farmacología , Receptor de Interferón alfa y beta/metabolismo , Receptores CCR2/metabolismo , Índice de Severidad de la Enfermedad , Organismos Libres de Patógenos Específicos , Replicación Viral/efectos de los fármacos
19.
J Infect Dis ; 208(11): 1898-905, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23901080

RESUMEN

BACKGROUND: Reassortment within polymerase genes causes changes in the pathogenicity of influenza A viruses. We previously reported that the 2009 pH1N1 PA enhanced the pathogenicity of seasonal H1N1. We examined the effects of the PA gene from the HPAI H5N1 following its introduction into currently circulating seasonal influenza viruses. METHODS: To evaluate the role of H5N1 PA in altering the virulence of seasonal influenza viruses, we generated a recombinant seasonal H3N2 (3446) that expressed the H5N1 PA protein (VPA) and evaluated the RNP activity, growth kinetics, and pathogenicity of the reassortant virus in mice. RESULTS: Compared with the wild-type 3446 virus, the substitution of the H5N1 PA gene into the 3446 virus (VPA/3446) resulted in increased RNP activity and an increased replication rate in A549 cells. The recombinant VPA/3446 virus also caused more severe pneumonia in Casp 1(-/-) mice than in IL1ß(-/-) and wild-type B6 mice. CONCLUSIONS: Although the PA from H5N1 is incidentally compatible with a seasonal H3N2 backbone, the H5N1 PA affected the virulence of seasonal H3N2, particularly in inflammasome-related innate immunity deficient mice. These findings highlight the importance of monitoring PA reassortment in seasonal flu, and confirm the role of the Caspase-1 gene in influenza pathogenesis.


Asunto(s)
Caspasa 1/metabolismo , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/virología , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Animales , Línea Celular , Modelos Animales de Enfermedad , Perros , Ingeniería Genética , Humanos , Inmunidad Innata , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/inmunología , ARN Polimerasa Dependiente del ARN/metabolismo , Virus Reordenados , Organismos Libres de Patógenos Específicos , Proteínas Virales/metabolismo , Virulencia , Replicación Viral
20.
Virus Res ; 345: 199387, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719025

RESUMEN

Influenza A virus can infect respiratory tracts and may cause severe illness in humans. Proteins encoded by influenza A virus can interact with cellular factors and dysregulate host biological processes to support viral replication and cause pathogenicity. The influenza viral PA protein is not only a subunit of influenza viral polymerase but also a virulence factor involved in pathogenicity during infection. To explore the role of the influenza virus PA protein in regulating host biological processes, we performed immunoprecipitation and LC‒MS/MS to globally identify cellular factors that interact with the PA proteins of the influenza A H1N1, 2009 pandemic H1N1, and H3N2 viruses. The results demonstrated that proteins located in the mitochondrion, proteasome, and nucleus are associated with the PA protein. We further discovered that the PA protein is partly located in mitochondria by immunofluorescence and mitochondrial fractionation and that overexpression of the PA protein reduces mitochondrial respiration. In addition, our results revealed the interaction between PA and the mitochondrial matrix protein PYCR2 and the antiviral role of PYCR2 during influenza A virus replication. Moreover, we found that the PA protein could also trigger autophagy and disrupt mitochondrial homeostasis. Overall, our research revealed the impacts of the influenza A virus PA protein on mitochondrial function and autophagy.


Asunto(s)
Mitocondrias , Proteínas Virales , Replicación Viral , Humanos , Mitocondrias/metabolismo , Mitocondrias/virología , Proteínas Virales/metabolismo , Proteínas Virales/genética , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Virus de la Influenza A/fisiología , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Virus de la Influenza A/metabolismo , Interacciones Huésped-Patógeno , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Autofagia , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Células HEK293 , Gripe Humana/virología , Gripe Humana/metabolismo , Células A549 , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA