Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Microbiol Immunol ; 67(4): 194-200, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36606663

RESUMEN

Defective superoxide production by NADPH oxidase 2 (Nox2) in phagocyte cells results in the development of chronic granulomatous disease (CGD), a hereditary disease characterized by recurrent and life-threatening infections. The partner protein p22phox is a membrane-spanning protein which forms a stable heterodimer with Nox2 in the endoplasmic reticulum. This interaction ensures the stability of each protein and their accurate trafficking to the cell membrane. The present paper describes the characterization of p22phox missense mutations that were identified in a patient with CGD who presented with undetectable levels of p22phox . Using a reconstitution system, it was found that p22phox expression decreased when R90Q, A117E, S118R, A124S, A124V, A125T, or E129K mutations were introduced, suggesting that these mutations destabilize the protein. In contrast, introducing an L105R mutation did not affect protein expression, but did inhibit p22phox binding to Nox2. Thus, the missense mutations discussed here contribute to the development of CGD by either disrupting protein stability or by impairing the interaction between p22phox and Nox2.


Asunto(s)
NADPH Oxidasas , Cricetulus , Animales , Línea Celular , Humanos , NADPH Oxidasas/química , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Mutación Missense , NADPH Oxidasa 2/metabolismo
2.
Biochem Biophys Res Commun ; 587: 78-84, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34872003

RESUMEN

An interaction between acute myeloid leukemia (AML) cells and endothelial cells in the bone marrow seems to play a critical role in chemosensitivity on leukemia treatment. The endothelial niche reportedly enhances the paracrine action of the soluble secretory proteins responsible for chemoresistance in a vascular endothelial growth factor A (VEGF-A)/VEGF receptor 2 (VEGFR-2) signaling pathway-dependent manner. To further investigate the contribution of VEGF-A/VEGFR-2 signaling to the chemoresistance of AML cells, a biochemical assay system in which the AML cells were cocultured with human endothelial EA.hy926 cells in a monolayer was developed. By coculture with EA.hy926 cells, this study revealed that the AML cells resisted apoptosis induced by the anticancer drug cytarabine. SU4312, a VEGFR-2 inhibitor, attenuated VEGFR-2 phosphorylation and VEGF-A/VEGFR-2 signaling-dependent endothelial cell migration; thus, this inhibitor was observed to block VEGF-A/VEGFR-2 signaling. Interestingly, this inhibitor did not reverse the chemoresistance. When VEGFR-2 was knocked out in EA.hy926 cells using the CRISPR-Cas9 system, the cytarabine-induced apoptosis of AML cells did not significantly change compared with that of wild-type cells. Thus, coculture-induced chemoresistance appears to be independent of VEGF-A/VEGFR-2 signaling. When the transwell, a coculturing device, separated the AML cells from the EA.hy926 cells in a monolayer, the coculture-induced chemoresistance was inhibited. Given that the migration of VEGF-A/VEGFR-2 signaling-dependent endothelial cells is necessary for the endothelial niche formation in the bone marrow, VEGF-A/VEGFR-2 signaling contributes to chemoresistance by mediating the niche formation process, but not to the chemoresistance of AML cells in the niche.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Citarabina/farmacología , Resistencia a Antineoplásicos/genética , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Inhibidores de la Angiogénesis/farmacología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular , Movimiento Celular/efectos de los fármacos , Técnicas de Cocultivo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Regulación Leucémica de la Expresión Génica , Técnicas de Inactivación de Genes , Células HL-60 , Humanos , Indoles/farmacología , Células Jurkat , Células K562 , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Modelos Biológicos , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neovascularización Patológica/prevención & control , Fosforilación , Transducción de Señal , Células U937 , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/deficiencia
3.
Biochem Biophys Res Commun ; 634: 83-91, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36240653

RESUMEN

Bladder cancer is an often widely disseminated and deadly cancer. To block the malignant outgrowth of bladder cancer, we must elucidate the molecular-level characteristics of not only bladder cancer cells but also their surrounding milieu. As part of this effort, we have long been studying extracellular S100A8/A9, which is elevated by the inflammation associated with certain cancers. Extracellularly enriched S100A8/A9 can hasten a shift to metastatic transition in multiple types of cancer cells. Intriguingly, high-level S100A8/A9 has been detected in the urine of bladder-cancer patients, and the level increases with the stage of malignancy. Nonetheless, S100A8/A9 has been investigated mainly as a potential biomarker of bladder cancers, and there have been no investigations of its role in bladder-cancer growth and metastasis. We herein report that extracellular S100A8/A9 induces upregulation of growth, migration and invasion in bladder cancer cells through its binding with cell-surface Toll-like receptor 4 (TLR4). Our molecular analysis revealed the TLR4 downstream signal that accelerates such cancer cell events. Tumor progression locus 2 (TPL2) was a key factor facilitating the aggressiveness of cancer cells. Upon binding of S100A8/A9 with TLR4, TPL2 activation was enhanced by an action with a TLR4 adaptor molecule, TIR domain-containing adaptor protein (TIRAP), which in turn led to activation of the mitogen-activated protein kinase (MAPK) cascade of TPL2. Finally, we showed that sustained inhibition of TLR4 in cancer cells effectively dampened cancer survival in vivo. Collectively, our results indicate that the S100A8/A9-TLR4-TPL2 axis influences the growth, survival, and invasive motility of bladder cancer cells.


Asunto(s)
Receptor Toll-Like 4 , Neoplasias de la Vejiga Urinaria , Humanos , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina-1 , Receptor Toll-Like 4/metabolismo , Vejiga Urinaria/metabolismo
4.
Microbiol Immunol ; 66(6): 342-349, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35338668

RESUMEN

l-Theanine (N-ethyl- l-glutamine) is an analog of l-glutamine and l-glutamic acid, accounts for up to 50% of all free amino acids in green tea, and elicits an umami taste. As l-theanine also shows various physiological activities including immune response-modifying activities, it is expected to be an excellent health-promoting phytochemical agent. To know the influences of l-theanine on the human innate immune response, we investigated the effect of l-theanine on the superoxide anion (O2 - )-generating system of leukocytes using U937 cells. The O2 - -generating system in leukocytes consists of membrane cytochrome b558 protein (a complex of p22-phox and gp91-phox proteins) and cytosolic p40-phox, p47-phox, and p67-phox proteins. Addition of 500 µM l-theanine caused remarkable enhancement of the all-trans retinoic acid (ATRA)-induced O2 - -generating activity (to ~470% of ATRA-treated cells), but not l-glutamine and l-glutamic acid. Semiquantitative RT-PCR showed that the transcription level of gp91-phox is significantly increased in ATRA and l-theanine-co-treated cells. Chromatin immunoprecipitation revealed that l-theanine enhances acetylations of Lys-9 and Lys-14 residues of histone H3 within the chromatin surrounding the promoter region of the gp91-phox gene. Immunoblotting demonstrated that membrane cytochrome b558 proteins remarkably accumulate in ATRA + l-theanine-treated cells. These results suggested that l-theanine brings about a remarkable accumulation of cytochrome b558 protein via upregulating the transcription of the gp91-phox gene during leukocyte differentiation, resulting in marked augmentation of the O2 - -generating ability, which is one of the most important functions of leukocytes responsible for the innate immune system.


Asunto(s)
Citocromos b , NADPH Oxidasas , Aminoácidos , Glutamatos , Ácido Glutámico , Glutamina/farmacología , Humanos , Inmunidad Innata , Leucocitos , NADPH Oxidasas/genética , Neutrófilos/metabolismo , Fosfoproteínas/metabolismo , Especies Reactivas de Oxígeno , Superóxidos/metabolismo , , Tretinoina
5.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142212

RESUMEN

The dissection of the complex multistep process of metastasis exposes vulnerabilities that could be exploited to prevent metastasis. To search for possible factors that favor metastatic outgrowth, we have been focusing on secretory S100A8/A9. A heterodimer complex of the S100A8 and S100A9 proteins, S100A8/A9 functions as a strong chemoattractant, growth factor, and immune suppressor, both promoting the cancer milieu at the cancer-onset site and cultivating remote, premetastatic cancer sites. We previously reported that melanoma cells show lung-tropic metastasis owing to the abundant expression of S100A8/A9 in the lung. In the present study, we addressed the question of why melanoma cells are not metastasized into the brain at significant levels in mice despite the marked induction of S100A8/A9 in the brain. We discovered the presence of plasma histidine-rich glycoprotein (HRG), a brain-metastasis suppression factor against S100A8/A9. Using S100A8/A9 as an affinity ligand, we searched for and purified the binding plasma proteins of S100A8/A9 and identified HRG as the major protein on mass spectrometric analysis. HRG prevents the binding of S100A8/A9 to the B16-BL6 melanoma cell surface via the formation of the S100A8/A9 complex. HRG also inhibited the S100A8/A9-induced migration and invasion of A375 melanoma cells. When we knocked down HRG in mice bearing skin melanoma, metastasis to both the brain and lungs was significantly enhanced. The clinical examination of plasma S100A8/A9 and HRG levels showed that lung cancer patients with brain metastasis had higher S100A8/A9 and lower HRG levels than nonmetastatic patients. These results suggest that the plasma protein HRG strongly protects the brain and lungs from the threat of melanoma metastasis.


Asunto(s)
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Neoplasias Pulmonares , Melanoma Experimental , Proteínas/metabolismo , Animales , Calgranulina A/sangre , Calgranulina A/genética , Calgranulina B/sangre , Factores Quimiotácticos , Ligandos , Neoplasias Pulmonares/metabolismo , Ratones
6.
J Biol Chem ; 295(33): 11877-11890, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32616654

RESUMEN

Directed migration of endothelial cells (ECs) is an important process during both physiological and pathological angiogenesis. The binding of vascular endothelial growth factor (VEGF) to VEGF receptor-2 (VEGFR-2) on the EC surface is necessary for directed migration of these cells. Here, we used TAXIScan, an optically accessible real-time horizontal cell dynamics assay approach, and demonstrate that reactive oxygen species (ROS)-producing NADPH oxidase 4 (NOX4), which is abundantly expressed in ECs, mediates VEGF/VEGFR-2-dependent directed migration. We noted that a continuous supply of endoplasmic reticulum (ER)-retained VEGFR-2 to the plasma membrane is required to maintain VEGFR-2 at the cell surface. siRNA-mediated NOX4 silencing decreased the ER-retained form of VEGFR-2, resulting in decreased cell surface expression levels of the receptor. We also found that ER-localized NOX4 interacts with ER-retained VEGFR-2 and thereby stabilizes this ER-retained form at the protein level in the ER. We conclude that NOX4 contributes to the directed migration of ECs by maintaining VEGFR-2 levels at their surface.


Asunto(s)
Movimiento Celular , Células Endoteliales/citología , NADPH Oxidasa 4/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Línea Celular , Retículo Endoplásmico/metabolismo , Células Endoteliales/metabolismo , Células HeLa , Humanos , Estabilidad Proteica , Especies Reactivas de Oxígeno/metabolismo
7.
Biosci Biotechnol Biochem ; 84(11): 2319-2326, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32799625

RESUMEN

Autophagy induced in cancer cells during chemotherapy is classified into two types, which differ depending on the kind of cells or anticancer drugs. The first type of autophagy contributes to the death of cells treated with drugs. In contrast, the second type plays a crucial role in preventing anticancer drug-induced cell damages; the use of an autophagy inhibitor is considered effective in improving the efficacy of chemotherapy. Thus, it is important to determine which type of autophagy is induced during chemotherapy. Here, we showed that a novel inhibitor of RNA polymerase I, suppresses growth, induces cell cycle arrest and promotes apoptosis in leukemia cell lines. The number of apoptotic cells induced by co-treatment with CX-5461 and chloroquine, an autophagy inhibitor, increased compared with CX-5461 alone. Thus, the autophagy which may be induced by CX-5461 was the second type.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Benzotiazoles/farmacología , Leucemia/patología , Naftiridinas/farmacología , ARN Ribosómico/biosíntesis , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Biosíntesis de Proteínas/efectos de los fármacos
8.
Microbiol Immunol ; 63(10): 438-443, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31329291

RESUMEN

The effects of chalcone and butein on the induction of the superoxide anion (O2 - )-generating system were studied in U937 cells by all-trans retinoic acid (RA). The chalcone skeleton, a common structural motif in them, significantly enhanced the transcription of gp91-phox in an epigenetic manner. In contrast, chalcone and butein showed opposite effects on the induction of the O2 - -generating activity by RA and the expression of gp91-phox protein. Chalcone inhibited, whereas butein promoted, the induction of O2 - -generating activity by RA and the expression of gp91-phox protein. These data raise the possibility that modification of the chalcone skeleton could produce more effective differentiation-promoting agents.


Asunto(s)
Chalcona/farmacología , Chalconas/farmacología , NADPH Oxidasa 2/genética , NADPH Oxidasa 2/metabolismo , Superóxidos/metabolismo , Humanos , Tretinoina/química , Células U937
9.
Biochem Biophys Res Commun ; 495(1): 1195-1200, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29183727

RESUMEN

The membrane bound cytochrome b558 composed of gp91-phox and p22-phox proteins, and cytosolic proteins p40-, p47-and p67-phox are important components of superoxide (O2-)-generating system in phagocytes. Here, we describe that resveratrol, a pleiotropic phytochemical belonging to the stilbenoids, dramatically activates the O2--generating system during retinoic acid (RA)-induced differentiation of human monoblastic leukemia U937 cells to macrophage-like cells. When U937 cells were cultured in the presence of RA and resveratrol, the O2--generating activity increased more than 5-fold compared with that in the absence of the latter. Semiquantitative RT-PCR showed that co-treatment with RA and resveratrol strongly enhanced transcription of the gp91-phox compared with those of the RA-treatment only. On the other hand, immunoblot analysis revealed that co-treatment with RA and resveratrol caused remarkable accumulation of protein levels of gp91-phox (to 4-fold), p22-phox (to 5-fold) and p47-phox (to 4-fold) compared with those of the RA-treatment alone. In addition, ChIP assay suggested that resveratrol participates in enhancing the gene expression of gp91-phox via promoting acetylation of Lys-9 residues and Lys-14 residues of histone H3 within chromatin around the promoter regions of the gene. These results suggested that resveratrol strongly enhances the RA-induced O2--generating activity via up-regulation of gp91-phox gene expression in U937 cells.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , NADPH Oxidasa 2/metabolismo , Neoplasias Experimentales/metabolismo , Estilbenos/administración & dosificación , Superóxidos/metabolismo , Tretinoina/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Resveratrol , Células U937 , Regulación hacia Arriba/efectos de los fármacos
10.
Microbiol Immunol ; 62(4): 269-280, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29573449

RESUMEN

Human phagocyte flavocytochrome b558 (Cyt b), the catalytic center of nicotinamide adenine dinucleotide phosphate oxidase, consists of a heavily glycosylated large subunit (gp91phox ; Nox2) and a small subunit (p22phox ). Cyt b is a membrane-spanning complex enzyme. Chronic granulomatous disease (CGD) is predominantly caused by a mutation in the CYBB gene encoding gp91phox on the X-chromosome. Because the phagocytes of patients with CGD are not able to generate the superoxide anion, these patients are susceptible to severe infections that can be fatal. It has been suggested that the extracellular region of gp91phox is necessary for and critical to forming the epitope of mAb 7D5 and that 7D5 provides a useful tool for rapid screening of X-linked CGD by FACS. To further elucidate the mAb 7D5 epitope on human gp91phox , chimeric DNA expressed human and mouse gp91phox recombinant protein were constructed. The fusion proteins were immunostained for mAb 7D5 and analyzed by FACS and western blot analysis. The 143 ELGDRQNES151 region was found to reside at the extracellular surface on human gp91phox and to be an important epitope for the interaction with mAb 7D5, as analyzed by FACS analysis. In particular, amino acid R147 is a unique epitope on the membrane-associated Cyt b for mAb 7D5. In conclusion, it is proposed that FACS analysis using mAb 7D5 is a valuable tool for early diagnosis of CGD.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Grupo Citocromo b/inmunología , Epítopos/inmunología , NADPH Oxidasa 2/inmunología , NADPH Oxidasas/inmunología , Fagocitos/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Línea Celular , Epítopos/análisis , Epítopos/química , Enfermedad Granulomatosa Crónica/inmunología , Células HL-60 , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Ratones , Mutación , NADPH Oxidasa 2/biosíntesis , NADPH Oxidasa 2/química , NADPH Oxidasa 2/genética , Dominios Proteicos , Células RAW 264.7 , Proteínas Recombinantes de Fusión/genética , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido , Superóxidos/metabolismo
11.
BMC Cancer ; 17(1): 234, 2017 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-28359316

RESUMEN

BACKGROUND: Migration of cancer cell correlates with distant metastasis and local invasion, which are good targets for cancer treatment. An optically accessible device "TAXIScan" was developed, which provides considerably more information regarding the cellular dynamics and less quantity of samples than do the existing methods. Here, we report the establishment of a system to analyze the nature of pancreatic cancer cells using TAXIScan and we evaluated lysophosphatidic acid (LPA)-elicited pancreatic cell migration. METHODS: Pancreatic cancer cell lines, BxPC3, PANC-1, AsPC1, and MIAPaCa-2, were analyzed for adhesion as well as migration towards LPA by TAXIScan using parameters such as velocity and directionality or for the number of migrated cells by the Boyden chamber methods. To confirm that the migration was initiated by LPA, the expression of LPA receptors and activation of intracellular signal transductions were examined by quantitative reverse transcriptase polymerase reaction and western blotting. RESULTS: Scaffold coating was necessary for the adhesion of pancreatic cancer cells, and collagen I and Matrigel were found to be good scaffolds. BxPC3 and PANC-1 cells clearly migrated towards the concentration gradient formed by injecting 1 µL LPA, which was abrogated by pre-treatment with LPA inhibitor, Ki16425 (IC50 for the directionality ≈ 1.86 µM). The LPA dependent migration was further confirmed by mRNA and protein expression of LPA receptors as well as phosphorylation of signaling molecules. LPA1 mRNA was highest among the 6 receptors, and LPA1, LPA2 and LPA3 proteins were detected in BxPC3 and PANC-1 cells. Phosphorylation of Akt (Thr308 and Ser473) and p42/44MAPK in BxPC3 and PANC-1 cells was observed after LPA stimulation, which was clearly inhibited by pre-treatment with a compound Ki16425. CONCLUSIONS: We established a novel pancreatic cancer cell migration assay system using TAXIScan. This assay device provides multiple information on migrating cells simultaneously, such as their morphology, directionality, and velocity, with a small volume of sample and can be a powerful tool for analyzing the nature of cancer cells and for identifying new factors that affect cell functions.


Asunto(s)
Movimiento Celular/fisiología , Lisofosfolípidos/farmacología , Dispositivos Ópticos/estadística & datos numéricos , Neoplasias Pancreáticas/patología , Movimiento Celular/efectos de los fármacos , Humanos , Técnicas In Vitro , Neoplasias Pancreáticas/tratamiento farmacológico , Receptores del Ácido Lisofosfatídico/metabolismo , Transducción de Señal/efectos de los fármacos , Células Tumorales Cultivadas
13.
J Clin Immunol ; 35(2): 158-67, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25666294

RESUMEN

BACKGROUND: Chronic granulomatous disease (CGD) is a primary immunodeficiency disease that is characterized by susceptibility to bacterial and fungal infections. Various mutations in CYBB encoding the gp91(phox) subunit of the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase impair the respiratory burst of all types of phagocytic cells and result in X-linked CGD (X-CGD). PURPOSE: We here sought to evaluate the underlying cause in an attenuated phenotype in an X-CGD patient. The patient is a 31-year-old male who had been diagnosed as having X-CGD based on the absence of nitroblue tetrazolium reduction and the presence of a CYBB mutation at the age of 1 year. He has been in good health after overcoming recurrent bacterial infections in infancy. METHODS: We investigated genomic DNA analysis of CYBB gene, residual activity of NADPH oxidase, and expression of gp91(phox) in both polymorphonuclear leukocytes (PMNs) and monocytes/macrophages in the present patient. RESULTS: Although his underlying germline mutation, c.1016C>A (p.P339H) in the CYBB gene, was identified in both PMNs and monocytes, the expression and functional activity of gp91(phox) retained in monocytes/macrophages, in stark contrast to markedly reduced PMNs. CONCLUSIONS: Our results indicate that residual reactive oxygen intermediates (ROI) production in PMNs plays an important role in infantile stage in X-CGD, but thereafter retained function of monocytes/macrophages might compensate for the function of NADPH oxidase deficient PMNs and might be an important parameter for predicting the prognosis of X-CGD patients.


Asunto(s)
Enfermedad Granulomatosa Crónica/genética , Enfermedad Granulomatosa Crónica/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , NADPH Oxidasas/genética , Adulto , Línea Celular Transformada , Grupo Citocromo b/genética , Grupo Citocromo b/metabolismo , Análisis Mutacional de ADN , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Activación Enzimática , Expresión Génica , Enfermedad Granulomatosa Crónica/complicaciones , Humanos , Inmunofenotipificación , Infecciones/etiología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutación , NADPH Oxidasa 2 , NADPH Oxidasas/química , NADPH Oxidasas/metabolismo , Especificidad de Órganos/genética , Estabilidad del ARN , Estallido Respiratorio/genética
14.
Biochem Biophys Res Commun ; 467(3): 509-13, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26456646

RESUMEN

Histone acetyltransferase p300/CBP-associated factor (PCAF) belonging to GCN5 family regulates various epigenetic events for transcriptional regulation through alterations in the chromatin structure. During normal development of B cells, gene expressions of numerous transcription factors are strictly regulated by epigenetic mechanisms including histone acetylation and deacetylation to complete their development pathways. Here, by analyzing PCAF-deficient DT40 mutants, ΔPCAF, we report that PCAF takes part in transcriptional activation of B cell lymphoma-6 (Bcl-6) and Paired box gene 5 (Pax5), which are essential transcription factors for normal development of B cells. PCAF-deficiency caused drastic decrease in mRNA levels of Bcl-6 and Pax5, and remarkable increase in that of B lymphocyte-induced maturation protein-1 (Blimp-1). In addition, chromatin immunoprecipitation assay showed that PCAF-deficiency caused remarkable decrease in acetylation levels of both H3K9 and H3K14 residues within chromatin surrounding the 5'-flanking regions of Bcl-6 and Pax5 genes in vivo, suggesting that their gene expressions may be regulated by PCAF. These results revealed that PCAF is involved in transactivation of Bcl-6 and Pax5 genes, resulting in down-regulation of Blimp-1 gene expression, and plays a key role in epigenetic regulation of B cell development.


Asunto(s)
Linfocitos B/metabolismo , Factor de Transcripción PAX5/genética , Proteínas Proto-Oncogénicas c-bcl-6/genética , Activación Transcripcional , Factores de Transcripción p300-CBP/metabolismo , Animales , Línea Celular , Pollos
15.
Biochem Biophys Res Commun ; 463(4): 870-5, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26086109

RESUMEN

The endoplasmic reticulum (ER), a complex membrane structure, has important roles in all eukaryotic cells. Catastrophe of its functions would lead to ER stress that causes various diseases such as cancer, neurodegenerative diseases, diabetes and so on. Prolonged ER stress could trigger apoptosis via activation of various signal transduction pathways. To investigate physiological roles of histone acetyltransferase GCN5 in regulation of ER stress, we analyzed responses of homozygous GCN5-deficient DT40 mutants, ΔGCN5, against ER stress. GCN5-deficiency in DT40 caused drastic resistance against apoptosis induced by pharmacological ER stress agents (thapsigargin and tunicamycin). Pharmaceutical analysis using specific Bcl-2 inhibitors showed that the drastic resistance against prolonged ER stress-induced apoptosis is, in part, due to up-regulation of Bcl-2 gene expression in ΔGCN5. These data revealed that GCN5 is involved in regulation of prolonged ER stress-induced apoptosis through controlling Bcl-2 gene expression.


Asunto(s)
Apoptosis , Retículo Endoplásmico/metabolismo , Genes bcl-2 , Histona Acetiltransferasas/metabolismo , Regulación hacia Arriba , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Pollos , Retículo Endoplásmico/efectos de los fármacos , Histona Acetiltransferasas/genética , Tapsigargina/farmacología
16.
Microbiol Immunol ; 59(7): 426-31, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26094714

RESUMEN

The transcription factor paired box gene 5 (Pax5) is essential for B cell development. In this study, complementation analyses in Pax5-deficient DT40 cells showed that three Pax5 isoforms Pax5A, Pax5B and Pax5BΔEx8 (another spliced isoform of Pax5B lacking exon 8) exhibit distinct roles in transcriptional regulation of six B cell development-related genes (activation-induced cytidine deaminase, Aiolos, BTB and CNC homology 2, B cell lymphoma-6, early B cell factor 1, origin binding factor-1 genes), transcriptions of which are remarkably down-regulated by Pax5-deficiency. Moreover, ectopic expression study shows that these Pax5 isoforms may regulate themselves and each other at the transcriptional level.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Factor de Transcripción PAX5/metabolismo , Células Precursoras de Linfocitos B/citología , Células Precursoras de Linfocitos B/metabolismo , Animales , Línea Celular Transformada , Pollos , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Factor de Transcripción PAX5/genética , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Transcripción Genética
17.
Microbiol Immunol ; 59(4): 243-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25644304

RESUMEN

The histone acetyltransferase p300/CBP-associated factor (PCAF) catalyzes acetylation of core histones and plays important roles in epigenetics by altering the chromatin structure in vertebrates. In this study, PCAF-deficient DT40 mutants were analyzed and it was found that PCAF participates in regulation of secretory IgM heavy chain (H-chain) synthesis. Remarkably, PCAF-deficiency causes an increase in the amount of secretory IgM H-chain mRNA, but not in that of IgM light chain and membrane-bound IgM H-chain mRNAs, resulting in dramatic up-regulation of the amount of secretory IgM protein. These findings suggest that PCAF regulates soluble antibody production and is thus an effective suppressor of secretory IgM H-chain synthesis.


Asunto(s)
Regulación hacia Abajo , Inmunoglobulina M/biosíntesis , Células Precursoras de Linfocitos B/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Animales , Línea Celular , Pollos , Cadenas Pesadas de Inmunoglobulina/biosíntesis , Cadenas Pesadas de Inmunoglobulina/genética , Inmunoglobulina M/genética , Células Precursoras de Linfocitos B/enzimología , Factores de Transcripción p300-CBP/genética
18.
Biochem Biophys Res Commun ; 443(1): 13-7, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24216108

RESUMEN

The Fas antigen, also designated as APO-1 or CD95, is a member of the tumor necrosis factor receptor superfamily and can mediate apoptotic cell death in various cells. We report here that blood coagulation factor XIII (plasma transglutaminase, fibrin stabilizing factor) inhibits apoptosis induced by a cytotoxic anti-Fas monoclonal antibody in Jurkat cells. When cells were treated with the antibody in fetal calf serum-containing media, higher-molecular-weight (180K) polypeptides containing Fas molecule were detected by immunoblotting. Under conditions where the transglutaminase activity was eliminated or suppressed, the cross-link of Fas was not observed, and concurrently cell death was hastened. Moreover, an antibody against factor XIII strongly accelerated the Fas-mediated apoptosis. Furthermore, addition of partially purified factor XIII neutralized the apoptosis-promoting effect of anti-factor XIII antibody, indicating that this enzyme is involved in cross-link of Fas and down-regulates Fas-mediated apoptotic cell death. Significantly, the cross-link of Fas was seen only in fetal calf serum but not in newly-born calf serum, 1-year-old calf serum or adult bovine serum. These data suggest that plasma transglutaminase factor XIII may play a key role in fetal development of vertebrates via cross-link of Fas antigen.


Asunto(s)
Apoptosis , Factor XIIIa/metabolismo , Feto/metabolismo , Receptor fas/metabolismo , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales de Origen Murino , Catálisis , Regulación hacia Abajo , Desarrollo Fetal , Humanos , Células Jurkat , Receptor fas/antagonistas & inhibidores
19.
Sci Rep ; 14(1): 10650, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724532

RESUMEN

Avoiding fatigue is a long-standing challenge in both healthy and diseased individuals. Establishing objective standard markers of fatigue is essential to evaluate conditions in spatiotemporally different locations and individuals and identify agents to fight against fatigue. Herein, we introduced a novel method for evaluating fatigue using nervous system markers (including dopamine, adrenaline, and noradrenaline), various cytokine levels (such as interleukin [IL]-1ß, tumor necrosis factor [TNF]-α, IL-10, IL-2, IL-5 and IL-17A), and oxidative stress markers (such as diacron-reactive oxygen metabolites [d-ROMs] and biological antioxidant potential [BAP]) in a rat fatigue model. Using this method, the anti-fatigue effects of methyl dihydrojasmonate (MDJ) and linalool, the fragrance/flavor compounds used in various products, were assessed. Our method evaluated the anti-fatigue effects of the aforementioned compounds based on the changes in levels of the nerves system markers, cytokines, and oxidative stress markers. MDJ exerted more potent anti-fatigue effects than linalool. In conclusion, the reported method could serve as a useful tool for fatigue studies and these compounds may act as effective therapeutic agents for abrogating fatigue symptoms.


Asunto(s)
Monoterpenos Acíclicos , Citocinas , Modelos Animales de Enfermedad , Fatiga , Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Monoterpenos Acíclicos/farmacología , Ratas , Fatiga/tratamiento farmacológico , Fatiga/metabolismo , Citocinas/metabolismo , Masculino , Ciclopentanos/farmacología , Antioxidantes/farmacología , Biomarcadores , Monoterpenos/farmacología , Oxilipinas/farmacología , Ratas Sprague-Dawley
20.
Front Oncol ; 14: 1371342, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38595825

RESUMEN

Background: Our earlier research revealed that the secreted lysyl oxidase-like 4 (LOXL4) that is highly elevated in triple-negative breast cancer (TNBC) acts as a catalyst to lock annexin A2 on the cell membrane surface, which accelerates invasive outgrowth of the cancer through the binding of integrin-ß1 on the cell surface. However, whether this machinery is subject to the LOXL4-mediated intrusive regulation remains uncertain. Methods: Cell invasion was assessed using a transwell-based assay, protein-protein interactions by an immunoprecipitation-Western blotting technique and immunocytochemistry, and plasmin activity in the cell membrane by gelatin zymography. Results: We revealed that cell surface annexin A2 acts as a receptor of plasminogen via interaction with S100A10, a key cell surface annexin A2-binding factor, and S100A11. We found that the cell surface annexin A2/S100A11 complex leads to mature active plasmin from bound plasminogen, which actively stimulates gelatin digestion, followed by increased invasion. Conclusion: We have refined our understanding of the role of LOXL4 in TNBC cell invasion: namely, LOXL4 mediates the upregulation of annexin A2 at the cell surface, the upregulated annexin 2 binds S100A11 and S100A10, and the resulting annexin A2/S100A11 complex acts as a receptor of plasminogen, readily converting it into active-form plasmin and thereby enhancing invasion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA