Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biochem Biophys Res Commun ; 682: 39-45, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37801988

RESUMEN

Cells sense and respond to extracellular mechanical stress through mechanotransduction receptors and ion channels, which regulate cellular behaviors such as cell proliferation and differentiation. Among them, PIEZO1, piezo-type mechanosensitive ion channel component 1, has recently been highlighted as a mechanosensitive ion channel in various cell types including mesenchymal stem cells. We previously reported that PIEZO1 is essential for ERK1/2 phosphorylation and osteoblast differentiation in bone marrow-derived mesenchymal stem cells (BMSCs), induced by hydrostatic pressure loading and treatment with the PIEZO1-specific activator Yoda1. However, the molecular mechanism underlying how PIEZO1 induces mechanotransduction remains unclear. In this study, we investigated that the role of the C-terminus in regulating extracellular Ca2+ influx and activating the ERK1/2 signaling pathway. We observed the activation of Fluo-4 AM in the Yoda1-stimulated human BMSC line UE7T-13, but not in a calcium-depleted cell culture medium. Similarly, Western blotting analysis revealed that Yoda1 treatment induced ERK1/2 phosphorylation, but this induction was not observed in calcium-depleted cell culture medium. To investigate the functional role of the C-terminus of PIEZO1, we generated HEK293 cells stably expressing the full-length mouse PIEZO1 (PIEZO1-FL) and a deletion-type PIEZO1 lacking the C-terminal intracellular region containing the R-Ras-binding domain (PIEZO1-ΔR-Ras). We found that Yoda1 treatment predominantly activated Flou-4 AM and ERK1/2 in PIEZO1-FL-trasfected cells but neither in PIEZO1-ΔR-Ras-transfected cells nor control cells. Our results indicate that the C-terminus of PIEZO1, which contains the R-Ras binding domain, plays an essential role in Ca2+ influx and activation of the ERK1/2 signaling pathway, suggesting that this domain is crucial for the mechanotransduction of osteoblastic differentiation in BMSCs.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Mecanotransducción Celular , Humanos , Ratones , Animales , Mecanotransducción Celular/fisiología , Calcio/metabolismo , Células HEK293 , Transducción de Señal , Canales Iónicos/metabolismo , Calcio de la Dieta
2.
Biochem Biophys Res Commun ; 650: 47-54, 2023 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-36773339

RESUMEN

Iroquois homeobox (Irx) genes are TALE-class homeobox genes that are evolutionarily conserved across species and have multiple critical cellular functions in fundamental tissue development processes. Previous studies have shown that Irxs genes are expressed during tooth development. However, the precise roles of genes in teeth remain unclear. Here, we demonstrated for the first time that Irx3 is an essential molecule for the proliferation and differentiation of odontoblasts. Using cDNA synthesized from postnatal day 1 (P1) tooth germs, we examined the expression of all Irx genes (Irx1-Irx6) by RT-PCR and found that all genes except Irx4 were expressed in the tooth tissue. Irx1-Irx3 a were expressed in the dental epithelial cell line M3H1 cells, while Irx3 and Irx5 were expressed in the dental mesenchymal cell line mDP cells. Only Irx3 was expressed in both undifferentiated cell lines. Immunostaining also revealed the presence of IRX3 in the dental epithelial cells and mesenchymal condensation. Inhibition of endogenous Irx3 by siRNA blocks the proliferation and differentiation of mDP cells. Wnt3a, Wnt5a, and Bmp4 are factors involved in odontoblast differentiation and were highly expressed in mDP cells by quantitative PCR analysis. Interestingly, the expression of Wnt5a (but not Wnt3a or Bmp4) was suppressed by Irx3 siRNA. These results suggest that Irx3 plays an essential role in part through the regulation of Wnt5a expression during odontoblast proliferation and differentiation.


Asunto(s)
Proteínas de Homeodominio , Factores de Transcripción , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Odontoblastos/metabolismo , Genes Homeobox , Diferenciación Celular , Proliferación Celular
3.
J Cell Physiol ; 237(3): 1964-1979, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34957547

RESUMEN

Cell- and tissue-specific extracellular matrix (ECM) composition plays an important role in organ development, including teeth, by regulating cell behaviors, such as cell proliferation and differentiation. Here, we demonstrate for the first time that von Willebrand factor D and epidermal growth factor (EGF) domains (Vwde), a previously uncharacterized ECM protein, is specifically expressed in teeth and regulates cell proliferation and differentiation in inner enamel epithelial cells (IEEs) and enamel formation. We identified the Vwde as a novel ECM protein through bioinformatics using the NCBI expressed sequence tag database for mice. Vwde complementary DNA encodes 1773 amino acids containing a signal peptide, a von Willebrand factor type D domain, and tandem calcium-binding EGF-like domains. Real-time polymerase chain reaction demonstrated that Vwde is highly expressed in tooth tissue but not in other tissues including the brain, lung, heart, liver, kidney, and bone. In situ hybridization revealed that the IEEs expressed Vwde messenger RNA in developing teeth. Immunostaining showed that VWDE was localized at the proximal and the distal ends of the pericellular regions of the IEEs. Vwde was induced during the differentiation of mouse dental epithelium-derived M3H1 cells. Vwde-transfected M3H1 cells secreted VWDE protein into the culture medium and inhibited cell proliferation, whereas ameloblastic differentiation was promoted. Furthermore, Vwde increased the phosphorylation of extracellular signal-regulated kinase 1/2 and protein kinase B and strongly induced the expression of the intercellular junction protein, N-cadherin (Ncad). Interestingly, the suppression of endogenous Vwde inhibited the expression of Ncad. Finally, we created Vwde-knockout mice using the CRISPR-Cas9 system. Vwde-null mice showed low mineral density, rough surface, and cracks in the enamel, indicating the enamel hypoplasia phenotype. Our findings suggest that Vwde assembling the matrix underneath the IEEs is essential for Ncad expression and enamel formation.


Asunto(s)
Ameloblastos , Diferenciación Celular , Esmalte Dental , Proteínas de la Matriz Extracelular , Ameloblastos/citología , Animales , Cadherinas/genética , Cadherinas/metabolismo , Esmalte Dental/crecimiento & desarrollo , Proteínas de la Matriz Extracelular/metabolismo , Ratones , Ratones Noqueados
4.
Exp Ther Med ; 22(6): 1356, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34659502

RESUMEN

The regulation of the mesenchymal stem cell (MSC) programming mechanism promises great success in regenerative medicine. Tissue regeneration has been associated not only with the differentiation of MSCs, but also with the microenvironment of the stem cell niche that involves various cytokines and immune cells in the tissue regeneration site. In the present study, fibroblast growth factor 2 (FGF2), the principal growth factor for tooth development, dental pulp homeostasis and dentin repair, was reported to affect the expression of cytokines in human dental pulp-derived MSCs. FGF2 significantly inhibited the expression of chemokine C-C motif ligand 11 (CCL11) in a time- and dose-dependent manner in the SDP11 human dental pulp-derived MSC line. This inhibition was diminished following treatment with the AZD4547 FGF receptor (FGFR) inhibitor, indicating that FGF2 negatively regulated the expression of CCL11 in SDP11 cells. Furthermore, FGF2 activated the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinases (JNK) in SDP11 cells. The mechanism of the FGFR-downstream signaling pathway was then studied using the SB203580, U0126 and SP600125 inhibitors for p38 MAPK, ERK1/2, and JNK, respectively. Interestingly, only treatment with SP600125 blocked the FGF2-mediated suppression of CCL11. The present results suggested that FGF2 regulated the expression of cytokines and suppressed the expression of CCL11 via the JNK signaling pathway in human dental pulp-derived MSCs. The present findings could provide important insights into the association of FGF2 and CCL11 in dental tissue regeneration therapy.

5.
Sci Rep ; 9(1): 14762, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31611621

RESUMEN

Signal transmission from the mechanical forces to the various intracellular activities is a fundamental process during tissue development. Despite their critical role, the mechanism of mechanical forces in the biological process is poorly understood. In this study, we demonstrated that in the response to hydrostatic pressure (HP), the piezo type mechanosensitive ion channel component 1 (PIEZO1) is a primary mechanosensing receptor for odontoblast differentiation through coordination of the WNT expression and ciliogenesis. In stem cells from human exfoliated deciduous teeth (SHED), HP significantly promoted calcium deposition as well as the expression of odontogenic marker genes, PANX3 and DSPP, and WNT related-genes including WNT5b and WNT16, whereas HP inhibited cell proliferation and enhanced primary cilia expression. WNT signaling inhibitor XAV939 and primary cilia inhibitor chloral hydrate blocked the HP-induced calcium deposition. The PIEZO1 activator Yoda1 inhibited cell proliferation but induced ciliogenesis and WNT16 expression. Interestingly, HP and Yoda1 promoted nuclear translocation of RUNX2, whereas siRNA-mediated silencing of PIEZO1 decreased HP-induced nuclear translocation of RUNX2. Taken together, these results suggest that PIEZO1 functions as a mechanotransducer that connects HP signal to the intracellular signalings during odontoblast differentiation.


Asunto(s)
Canales Iónicos/metabolismo , Odontogénesis , Vía de Señalización Wnt , Adolescente , Proliferación Celular , Células Cultivadas , Niño , Femenino , Humanos , Masculino , Células Madre/citología , Células Madre/metabolismo , Diente Primario/citología , Diente Primario/metabolismo
6.
Mol Med Rep ; 19(6): 5039-5045, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31059063

RESUMEN

Wound healing is a dynamic process that involves highly coordinated cellular events, including proliferation and migration. Oral gingival fibroblasts serve a central role in maintaining oral mucosa homeostasis, and their functions include the coordination of physiological tissue repair. Recently, surface pre­reacted glass­ionomer (S­PRG) fillers have been widely applied in the field of dental materials for the prevention of dental caries, due to an excellent ability to release fluoride (F). In addition to F, S­PRG fillers are known to release several types of ions, including aluminum (Al), boron (B), sodium (Na), silicon (Si) and strontium (Sr). However, the influence of these ions on gingival fibroblasts remains unknown. The aim of the present study was to examine the effect of various concentrations of an S­PRG filler eluate on the growth and migration of gingival fibroblasts. The human gingival fibroblast cell line HGF­1 was treated with various dilutions of an eluent solution of S­PRG, which contained 32.0 ppm Al, 1,488.6 ppm B, 505.0 ppm Na, 12.9 ppm Si, 156.5 ppm Sr and 136.5 ppm F. Treatment with eluate at a dilution of 1:10,000 was observed to significantly promote the migration of HGF­1 cells. In addition, the current study evaluated the mechanism underlying the mediated cell migration by the S­PRG solution and revealed that it activated the phosphorylation of extracellular signal­regulated kinase 1/2 (ERK1/2), but not of p38. Furthermore, treatment with a MEK inhibitor blocked the cell migration induced by the solution. Taken together, these results suggest that S­PRG fillers can stimulate HGF­1 cell migration via the ERK1/2 signaling pathway, indicating that a dental material containing this type of filler is useful for oral mucosa homeostasis and wound healing.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Aluminio/química , Boro/química , Línea Celular , Movimiento Celular , Proliferación Celular/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/metabolismo , Encía/citología , Humanos , Iones/química , Iones/farmacología , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Silicio/química , Sodio/química , Estroncio/química , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA