Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 147(20)2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33106325

RESUMEN

The neural crest is regionalized along the anteroposterior axis, as demonstrated by foundational lineage-tracing experiments that showed the restricted developmental potential of neural crest cells originating in the head. Here, we explore how recent studies of experimental embryology, genetic circuits and stem cell differentiation have shaped our understanding of the mechanisms that establish axial-specific populations of neural crest cells. Additionally, we evaluate how comparative, anatomical and genomic approaches have informed our current understanding of the evolution of the neural crest and its contribution to the vertebrate body.


Asunto(s)
Tipificación del Cuerpo , Cabeza/embriología , Cresta Neural/embriología , Cola (estructura animal)/embriología , Animales , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Redes Reguladoras de Genes , Cresta Neural/citología
2.
Dev Biol ; 480: 25-38, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34389276

RESUMEN

The neural crest (NC) is a transient multipotent cell population that migrates extensively to produce a remarkable array of vertebrate cell types. NC cell specification progresses in an anterior to posterior fashion, resulting in distinct, axial-restricted subpopulations. The anterior-most, cranial, population of NC is specified as gastrulation concludes and neurulation begins, while more posterior populations become specified as the body elongates. The mechanisms that govern development of the more posterior NC cells remain incompletely understood. Here, we report a key role for zebrafish Cdx4, a homeodomain transcription factor, in the development of posterior NC cells. We demonstrate that cdx4 is expressed in trunk NC cell progenitors, directly binds NC cell-specific enhancers in the NC GRN, and regulates expression of the key NC development gene foxd3 in the posterior body. Moreover, cdx4 mutants show disruptions to the segmental pattern of trunk NC cell migration due to loss of normal leader/follower cell dynamics. Finally, using cell transplantation to generate chimeric specimens, we show that Cdx4 does not function in the paraxial mesoderm-the environment adjacent to which crest migrates-to influence migratory behaviors. We conclude that cdx4 plays a critical, and likely tissue autonomous, role in the establishment of trunk NC migratory behaviors. Together, our results indicate that cdx4 functions as an early NC specifier gene in the posterior body of zebrafish embryos.


Asunto(s)
Proteínas de Homeodominio/genética , Cresta Neural/metabolismo , Factores de Transcripción/genética , Animales , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Movimiento Celular/genética , Factores de Transcripción Forkhead/metabolismo , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/metabolismo , Morfogénesis/genética , Placa Neural/metabolismo , Tubo Neural/metabolismo , Neurulación/genética , Factores de Transcripción/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
3.
BMC Mol Cell Biol ; 24(1): 32, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821823

RESUMEN

The morphogenetic process of apical constriction, which relies on non-muscle myosin II (NMII) generated constriction of apical domains of epithelial cells, is key to the development of complex cellular patterns. Apical constriction occurs in almost all multicellular organisms, but one of the most well-characterized systems is the Folded-gastrulation (Fog)-induced apical constriction that occurs in Drosophila. The binding of Fog to its cognizant receptors Mist/Smog results in a signaling cascade that leads to the activation of NMII-generated contractility. Despite our knowledge of key molecular players involved in Fog signaling, we sought to explore whether other proteins have an undiscovered role in its regulation. We developed a computational method to predict unidentified candidate NMII regulators using a network of pairwise protein-protein interactions called an interactome. We first constructed a Drosophila interactome of over 500,000 protein-protein interactions from several databases that curate high-throughput experiments. Next, we implemented several graph-based algorithms that predicted 14 proteins potentially involved in Fog signaling. To test these candidates, we used RNAi depletion in combination with a cellular contractility assay in Drosophila S2R + cells, which respond to Fog by contracting in a stereotypical manner. Of the candidates we screened using this assay, two proteins, the serine/threonine phosphatase Flapwing and the putative guanylate kinase CG11811 were demonstrated to inhibit cellular contractility when depleted, suggestive of their roles as novel regulators of the Fog pathway.


Asunto(s)
Proteínas de Drosophila , Gastrulación , Animales , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Miosina Tipo II/metabolismo , Transducción de Señal/fisiología
4.
J Vis Exp ; (180)2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35225280

RESUMEN

Zebrafish exhibit remarkable life-long growth and regenerative abilities. For example, specialized stem cell niches established during embryogenesis support continuous growth of the entire visual system, both in the eye and the brain. Coordinated growth between the retinae and the optic tectum ensures accurate retinotopic mapping as new neurons are added in the eyes and brain. To address whether retinal axons provide crucial information for regulating tectal stem and progenitor cell behaviors such as survival, proliferation, and/or differentiation, it is necessary to be able to compare innervated and denervated tectal lobes within the same animal and across animals. Surgical removal of one eye from living larval zebrafish followed by observation of the optic tectum achieves this goal. The accompanying video demonstrates how to anesthetize larvae, electrolytically sharpen tungsten needles, and use them to remove one eye. It next shows how to dissect brains from fixed zebrafish larvae. Finally, the video provides an overview of the protocol for immunohistochemistry and a demonstration of how to mount stained embryos in low-melting-point agarose for microscopy.


Asunto(s)
Vías Visuales , Pez Cebra , Animales , Larva , Retina , Colículos Superiores , Vías Visuales/fisiología , Pez Cebra/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA