Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Am Chem Soc ; 137(21): 6880-8, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25946315

RESUMEN

Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is applied to single-chain polymeric nanoparticles (SCPNs) to acquire information about the internal folding structure of SCPNs and inherent kinetic parameters of supramolecular self-assembling motifs embedded into the SCPNs. The SCPNs used here are polyacrylate-based polymers carrying 2-ureido-4-[1H]-pyrimidinone (UPy) or benzene-1,3,5-tricarboxamide (BTA) pendants that induce an intramolecular chain collapse into nanoparticles consisting of one polymer chain only via internal supramolecular cross-linking. The SCPN is stretched by an AFM cantilever to unfold mechanically, which allows measuring of force-extension profiles of the SCPNs. Consecutive peaks observed in the force profiles are attributed to rupture events of self-assembled UPy/BTA units in the SCPNs. The force profiles have been analyzed statistically for a series of polymers with different UPy/BTA incorporation densities. The results provide insights into the internal conformation of SCPNs, where the folding structure can be changed with the incorporation density of UPy/BTA. In addition, dynamic loading rate analysis allows the determination of kinetic parameters of BTA self-assembly, which has not been accessible by any other method. This study offers a rational tool for understanding the folding structure, kinetics, and pathway of two series of SCPNs.


Asunto(s)
Nanopartículas/química , Polímeros/química , Microscopía de Fuerza Atómica , Modelos Moleculares , Estructura Molecular
2.
Nat Mater ; 13(11): 1055-62, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25262095

RESUMEN

For rational design of advanced polymeric materials, it is critical to establish a clear mechanistic link between the molecular structure of a polymer and the emergent bulk mechanical properties. Despite progress towards this goal, it remains a major challenge to directly correlate the bulk mechanical performance to the nanomechanical properties of individual constituent macromolecules. Here, we show a direct correlation between the single-molecule nanomechanical properties of a biomimetic modular polymer and the mechanical characteristics of the resulting bulk material. The multi-cyclic single-molecule force spectroscopy (SMFS) data enabled quantitative derivation of the asymmetric potential energy profile of individual module rupture and re-folding, in which a steep dissociative pathway accounted for the high plateau modulus, while a shallow associative well explained the energy-dissipative hysteresis and dynamic, adaptive recovery. These results demonstrate the potential for SMFS to serve as a guide for future rational design of advanced multifunctional materials.


Asunto(s)
Materiales Biomiméticos/química , Materiales Biomiméticos/síntesis química , Polímeros/química , Polímeros/síntesis química , Ensayo de Materiales/métodos
3.
Angew Chem Int Ed Engl ; 51(42): 10561-5, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22987779

RESUMEN

Polymer, heal thyself! Supramolecular ABA triblock copolymers formed by dimerization of 2-ureido-4-pyrimidinone (UPy) end-functionalized polystyrene-b-poly(n-butyl acrylate) (PS-b-PBA) AB diblock copolymers have been synthesized, resulting in a self-healing material that combines the advantageous mechanical properties of thermoplastic elastomers and the dynamic self-healing features of supramolecular materials.


Asunto(s)
Sustancias Macromoleculares/química , Polímeros/química , Acrilatos/química , Cristalografía por Rayos X , Modelos Moleculares , Poliestirenos/química , Pirimidinonas/química
4.
Angew Chem Int Ed Engl ; 50(39): 9026-57, 2011 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-21898722

RESUMEN

Under eons of evolutionary and environmental pressure, biological systems have developed strong and lightweight peptide-based polymeric materials by using the 20 naturally occurring amino acids as principal monomeric units. These materials outperform their man-made counterparts in the following ways: 1) multifunctionality/tunability, 2) adaptability/stimuli-responsiveness, 3) synthesis and processing under ambient and aqueous conditions, and 4) recyclability and biodegradability. The universal design strategy that affords these advanced properties involves "bottom-up" synthesis and modular, hierarchical organization both within and across multiple length-scales. The field of "biomimicry"-elucidating and co-opting nature's basic material design principles and molecular building blocks-is rapidly evolving. This Review describes what has been discovered about the structure and molecular mechanisms of natural polymeric materials, as well as the progress towards synthetic "mimics" of these remarkable systems.


Asunto(s)
Materiales Biomiméticos/química , Amiloide/química , Conectina , Elastina/química , Fibroínas/química , Proteínas Musculares/química , Nanocompuestos/química , Péptidos/síntesis química , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Proteínas Quinasas/química , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
J Am Chem Soc ; 131(25): 8766-8, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19505144

RESUMEN

Natural materials employ many elegant strategies to achieve mechanical properties required for survival under varying environmental conditions. Thus these remarkable biopolymers and nanocomposites often not only have a combination of mechanical properties such as high modulus, toughness, and elasticity, but also exhibit adaptive and stimuli-responsive properties. Inspired by skeletal muscle protein titin, we have synthesized a biomimetic modular polymer that not only closely mimics the modular multidomain structure of titin, but also manifests an exciting combination of mechanical properties, as well as adaptive properties such as self-healing and temperature-responsive shape-memory properties.


Asunto(s)
Materiales Biomiméticos/química , Proteínas Musculares/química , Polímeros/química , Proteínas Quinasas/química , Conectina , Elasticidad , Ensayo de Materiales , Modelos Moleculares , Estructura Molecular , Polímeros/síntesis química , Conformación Proteica , Estrés Mecánico , Temperatura
6.
Nat Chem ; 4(6): 467-72, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22614381

RESUMEN

The development of polymers that can spontaneously repair themselves after mechanical damage would significantly improve the safety, lifetime, energy efficiency and environmental impact of man-made materials. Most approaches to self-healing materials require the input of external energy, healing agents, solvent or plasticizer. Despite intense research in this area, the synthesis of a stiff material with intrinsic self-healing ability remains a key challenge. Here, we show a design of multiphase supramolecular thermoplastic elastomers that combine high modulus and toughness with spontaneous healing capability. The designed hydrogen-bonding brush polymers self-assemble into a hard-soft microphase-separated system, combining the enhanced stiffness and toughness of nanocomposites with the self-healing capability of dynamic supramolecular assemblies. In contrast to previous self-healing polymers, this new system spontaneously self-heals as a single-component solid material at ambient conditions, without the need for any external stimulus, healing agent, plasticizer or solvent.


Asunto(s)
Elastómeros , Plásticos , Enlace de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA