Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(1): 66-80, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995504

RESUMEN

Alternate splicing events can create isoforms that alter gene function, and genetic variants associated with alternate gene isoforms may reveal molecular mechanisms of disease. We used subcutaneous adipose tissue of 426 Finnish men from the METSIM study and identified splice junction quantitative trait loci (sQTLs) for 6,077 splice junctions (FDR < 1%). In the same individuals, we detected expression QTLs (eQTLs) for 59,443 exons and 15,397 genes (FDR < 1%). We identified 595 genes with an sQTL and exon eQTL but no gene eQTL, which could indicate potential isoform differences. Of the significant sQTL signals, 2,114 (39.8%) included at least one proxy variant (linkage disequilibrium r2 > 0.8) located within an intron spanned by the splice junction. We identified 203 sQTLs that colocalized with 141 genome-wide association study (GWAS) signals for cardiometabolic traits, including 25 signals for lipid traits, 24 signals for body mass index (BMI), and 12 signals for waist-hip ratio adjusted for BMI. Among all 141 GWAS signals colocalized with an sQTL, we detected 26 that also colocalized with an exon eQTL for an exon skipped by the sQTL splice junction. At a GWAS signal for high-density lipoprotein cholesterol colocalized with an NR1H3 sQTL splice junction, we show that the alternative splice product encodes an NR1H3 transcription factor that lacks a DNA binding domain and fails to activate transcription. Together, these results detect splicing events and candidate mechanisms that may contribute to gene function at GWAS loci.


Asunto(s)
Empalme Alternativo , Factores de Riesgo Cardiometabólico , Regulación de la Expresión Génica , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Grasa Subcutánea/metabolismo , Sitios de Unión , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Biología Computacional/métodos , Exones , Finlandia , Genes Reporteros , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genética de Población , Estudio de Asociación del Genoma Completo/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Receptores X del Hígado/genética , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Anotación de Secuencia Molecular , Fenotipo , Isoformas de Proteínas/genética , Sitios de Empalme de ARN , Proteínas de Unión al ARN
2.
Am J Hum Genet ; 109(10): 1727-1741, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36055244

RESUMEN

Transcriptomics data have been integrated with genome-wide association studies (GWASs) to help understand disease/trait molecular mechanisms. The utility of metabolomics, integrated with transcriptomics and disease GWASs, to understand molecular mechanisms for metabolite levels or diseases has not been thoroughly evaluated. We performed probabilistic transcriptome-wide association and locus-level colocalization analyses to integrate transcriptomics results for 49 tissues in 706 individuals from the GTEx project, metabolomics results for 1,391 plasma metabolites in 6,136 Finnish men from the METSIM study, and GWAS results for 2,861 disease traits in 260,405 Finnish individuals from the FinnGen study. We found that genetic variants that regulate metabolite levels were more likely to influence gene expression and disease risk compared to the ones that do not. Integrating transcriptomics with metabolomics results prioritized 397 genes for 521 metabolites, including 496 previously identified gene-metabolite pairs with strong functional connections and suggested 33.3% of such gene-metabolite pairs shared the same causal variants with genetic associations of gene expression. Integrating transcriptomics and metabolomics individually with FinnGen GWAS results identified 1,597 genes for 790 disease traits. Integrating transcriptomics and metabolomics jointly with FinnGen GWAS results helped pinpoint metabolic pathways from genes to diseases. We identified putative causal effects of UGT1A1/UGT1A4 expression on gallbladder disorders through regulating plasma (E,E)-bilirubin levels, of SLC22A5 expression on nasal polyps and plasma carnitine levels through distinct pathways, and of LIPC expression on age-related macular degeneration through glycerophospholipid metabolic pathways. Our study highlights the power of integrating multiple sets of molecular traits and GWAS results to deepen understanding of disease pathophysiology.


Asunto(s)
Estudio de Asociación del Genoma Completo , Transcriptoma , Bilirrubina , Carnitina , Glicerofosfolípidos , Humanos , Masculino , Metabolómica , Sitios de Carácter Cuantitativo/genética , Miembro 5 de la Familia 22 de Transportadores de Solutos/genética , Transcriptoma/genética
3.
Nature ; 570(7759): 71-76, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31118516

RESUMEN

Protein-coding genetic variants that strongly affect disease risk can yield relevant clues to disease pathogenesis. Here we report exome-sequencing analyses of 20,791 individuals with type 2 diabetes (T2D) and 24,440 non-diabetic control participants from 5 ancestries. We identify gene-level associations of rare variants (with minor allele frequencies of less than 0.5%) in 4 genes at exome-wide significance, including a series of more than 30 SLC30A8 alleles that conveys protection against T2D, and in 12 gene sets, including those corresponding to T2D drug targets (P = 6.1 × 10-3) and candidate genes from knockout mice (P = 5.2 × 10-3). Within our study, the strongest T2D gene-level signals for rare variants explain at most 25% of the heritability of the strongest common single-variant signals, and the gene-level effect sizes of the rare variants that we observed in established T2D drug targets will require 75,000-185,000 sequenced cases to achieve exome-wide significance. We propose a method to interpret these modest rare-variant associations and to incorporate these associations into future target or gene prioritization efforts.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Secuenciación del Exoma , Exoma/genética , Animales , Estudios de Casos y Controles , Técnicas de Apoyo para la Decisión , Femenino , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones , Ratones Noqueados
4.
Am J Hum Genet ; 108(4): 583-596, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33798444

RESUMEN

The contribution of genome structural variation (SV) to quantitative traits associated with cardiometabolic diseases remains largely unknown. Here, we present the results of a study examining genetic association between SVs and cardiometabolic traits in the Finnish population. We used sensitive methods to identify and genotype 129,166 high-confidence SVs from deep whole-genome sequencing (WGS) data of 4,848 individuals. We tested the 64,572 common and low-frequency SVs for association with 116 quantitative traits and tested candidate associations using exome sequencing and array genotype data from an additional 15,205 individuals. We discovered 31 genome-wide significant associations at 15 loci, including 2 loci at which SVs have strong phenotypic effects: (1) a deletion of the ALB promoter that is greatly enriched in the Finnish population and causes decreased serum albumin level in carriers (p = 1.47 × 10-54) and is also associated with increased levels of total cholesterol (p = 1.22 × 10-28) and 14 additional cholesterol-related traits, and (2) a multi-allelic copy number variant (CNV) at PDPR that is strongly associated with pyruvate (p = 4.81 × 10-21) and alanine (p = 6.14 × 10-12) levels and resides within a structurally complex genomic region that has accumulated many rearrangements over evolutionary time. We also confirmed six previously reported associations, including five led by stronger signals in single nucleotide variants (SNVs) and one linking recurrent HP gene deletion and cholesterol levels (p = 6.24 × 10-10), which was also found to be strongly associated with increased glycoprotein level (p = 3.53 × 10-35). Our study confirms that integrating SVs in trait-mapping studies will expand our knowledge of genetic factors underlying disease risk.


Asunto(s)
Enfermedades Cardiovasculares/genética , Variación Estructural del Genoma/genética , Alelos , Colesterol/sangre , Variaciones en el Número de Copia de ADN/genética , Femenino , Finlandia , Genoma Humano/genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Proteínas Mitocondriales/genética , Regiones Promotoras Genéticas/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Ácido Pirúvico/metabolismo , Albúmina Sérica Humana/genética
5.
J Virol ; 97(4): e0014423, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37039676

RESUMEN

2019 coronavirus disease (COVID-19) is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to respiratory illness, COVID-19 patients exhibit neurological symptoms lasting from weeks to months (long COVID). It is unclear whether these neurological manifestations are due to an infection of brain cells. We found that a small fraction of human induced pluripotent stem cell (iPSC)-derived neurons, but not astrocytes, were naturally susceptible to SARS-CoV-2. Based on the inhibitory effect of blocking antibodies, the infection seemed to depend on the receptor angiotensin-converting enzyme 2 (ACE2), despite very low levels of its expression in neurons. The presence of double-stranded RNA in the cytoplasm (the hallmark of viral replication), abundant synthesis of viral late genes localized throughout infected cells, and an increase in the level of viral RNA in the culture medium (viral release) within the first 48 h of infection suggested that the infection was productive. Productive entry of SARS-CoV-2 requires the fusion of the viral and cellular membranes, which results in the delivery of the viral genome into the cytoplasm of the target cell. The fusion is triggered by proteolytic cleavage of the viral surface spike protein, which can occur at the plasma membrane or from endosomes or lysosomes. We found that SARS-CoV-2 infection of human neurons was insensitive to nafamostat and camostat, which inhibit cellular serine proteases, including transmembrane serine protease 2 (TMPRSS2). Inhibition of cathepsin L also did not significantly block infection. In contrast, the neuronal infection was blocked by apilimod, an inhibitor of phosphatidyl-inositol 5 kinase (PIK5K), which regulates early to late endosome maturation. IMPORTANCE COVID-19 is a disease caused by the coronavirus SARS-CoV-2. Millions of patients display neurological symptoms, including headache, impairment of memory, seizures, and encephalopathy, as well as anatomical abnormalities, such as changes in brain morphology. SARS-CoV-2 infection of the human brain has been documented, but it is unclear whether the observed neurological symptoms are linked to direct brain infection. The mechanism of virus entry into neurons has also not been characterized. Here, we investigated SARS-CoV-2 infection by using a human iPSC-derived neural cell model and found that a small fraction of cortical-like neurons was naturally susceptible to infection. The productive infection was ACE2 dependent and TMPRSS2 independent. We also found that the virus used the late endosomal and lysosomal pathway for cell entry and that the infection could be blocked by apilimod, an inhibitor of cellular PIK5K.


Asunto(s)
COVID-19 , Células Madre Pluripotentes Inducidas , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2 , COVID-19/fisiopatología , Endosomas/metabolismo , Endosomas/virología , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Neuronas/virología , Síndrome Post Agudo de COVID-19/fisiopatología , Síndrome Post Agudo de COVID-19/virología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos , Fosfotransferasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Astrocitos/virología , Células Cultivadas
6.
PLoS Genet ; 16(9): e1009019, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32915782

RESUMEN

Loci identified in genome-wide association studies (GWAS) can include multiple distinct association signals. We sought to identify the molecular basis of multiple association signals for adiponectin, a hormone involved in glucose regulation secreted almost exclusively from adipose tissue, identified in the Metabolic Syndrome in Men (METSIM) study. With GWAS data for 9,262 men, four loci were significantly associated with adiponectin: ADIPOQ, CDH13, IRS1, and PBRM1. We performed stepwise conditional analyses to identify distinct association signals, a subset of which are also nearly independent (lead variant pairwise r2<0.01). Two loci exhibited allelic heterogeneity, ADIPOQ and CDH13. Of seven association signals at the ADIPOQ locus, two signals colocalized with adipose tissue expression quantitative trait loci (eQTLs) for three transcripts: trait-increasing alleles at one signal were associated with increased ADIPOQ and LINC02043, while trait-increasing alleles at the other signal were associated with decreased ADIPOQ-AS1. In reporter assays, adiponectin-increasing alleles at two signals showed corresponding directions of effect on transcriptional activity. Putative mechanisms for the seven ADIPOQ signals include a missense variant (ADIPOQ G90S), a splice variant, a promoter variant, and four enhancer variants. Of two association signals at the CDH13 locus, the first signal consisted of promoter variants, including the lead adipose tissue eQTL variant for CDH13, while a second signal included a distal intron 1 enhancer variant that showed ~2-fold allelic differences in transcriptional reporter activity. Fine-mapping and experimental validation demonstrated that multiple, distinct association signals at these loci can influence multiple transcripts through multiple molecular mechanisms.


Asunto(s)
Adiponectina/genética , Adiponectina/metabolismo , Tejido Adiposo/metabolismo , Alelos , Cadherinas/genética , Cadherinas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Masculino , Síndrome Metabólico/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Am J Hum Genet ; 105(4): 773-787, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31564431

RESUMEN

Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with cardiometabolic traits including type 2 diabetes (T2D), lipid levels, body fat distribution, and adiposity, although most causal genes remain unknown. We used subcutaneous adipose tissue RNA-seq data from 434 Finnish men from the METSIM study to identify 9,687 primary and 2,785 secondary cis-expression quantitative trait loci (eQTL; <1 Mb from TSS, FDR < 1%). Compared to primary eQTL signals, secondary eQTL signals were located further from transcription start sites, had smaller effect sizes, and were less enriched in adipose tissue regulatory elements compared to primary signals. Among 2,843 cardiometabolic GWAS signals, 262 colocalized by LD and conditional analysis with 318 transcripts as primary and conditionally distinct secondary cis-eQTLs, including some across ancestries. Of cardiometabolic traits examined for adipose tissue eQTL colocalizations, waist-hip ratio (WHR) and circulating lipid traits had the highest percentage of colocalized eQTLs (15% and 14%, respectively). Among alleles associated with increased cardiometabolic GWAS risk, approximately half (53%) were associated with decreased gene expression level. Mediation analyses of colocalized genes and cardiometabolic traits within the 434 individuals provided further evidence that gene expression influences variant-trait associations. These results identify hundreds of candidate genes that may act in adipose tissue to influence cardiometabolic traits.


Asunto(s)
Tejido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/genética , Expresión Génica , Obesidad/genética , Alelos , Índice de Masa Corporal , Finlandia , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Sitios de Carácter Cuantitativo , Relación Cintura-Cadera
8.
Hum Genomics ; 15(1): 34, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099068

RESUMEN

BACKGROUND: Mitochondrial genome copy number (MT-CN) varies among humans and across tissues and is highly heritable, but its causes and consequences are not well understood. When measured by bulk DNA sequencing in blood, MT-CN may reflect a combination of the number of mitochondria per cell and cell-type composition. Here, we studied MT-CN variation in blood-derived DNA from 19184 Finnish individuals using a combination of genome (N = 4163) and exome sequencing (N = 19034) data as well as imputed genotypes (N = 17718). RESULTS: We identified two loci significantly associated with MT-CN variation: a common variant at the MYB-HBS1L locus (P = 1.6 × 10-8), which has previously been associated with numerous hematological parameters; and a burden of rare variants in the TMBIM1 gene (P = 3.0 × 10-8), which has been reported to protect against non-alcoholic fatty liver disease. We also found that MT-CN is strongly associated with insulin levels (P = 2.0 × 10-21) and other metabolic syndrome (metS)-related traits. Using a Mendelian randomization framework, we show evidence that MT-CN measured in blood is causally related to insulin levels. We then applied an MT-CN polygenic risk score (PRS) derived from Finnish data to the UK Biobank, where the association between the PRS and metS traits was replicated. Adjusting for cell counts largely eliminated these signals, suggesting that MT-CN affects metS via cell-type composition. CONCLUSION: These results suggest that measurements of MT-CN in blood-derived DNA partially reflect differences in cell-type composition and that these differences are causally linked to insulin and related traits.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Variaciones en el Número de Copia de ADN/genética , ADN Mitocondrial/sangre , Proteínas de Unión al GTP/genética , Proteínas de la Membrana/genética , Proteínas Proto-Oncogénicas c-myb/genética , Adulto , Anciano , Linaje de la Célula/genética , ADN Mitocondrial/genética , Femenino , Predisposición Genética a la Enfermedad , Genoma Mitocondrial/genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Secuenciación del Exoma
9.
Hum Mol Genet ; 28(24): 4161-4172, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31691812

RESUMEN

Integration of genome-wide association study (GWAS) signals with expression quantitative trait loci (eQTL) studies enables identification of candidate genes. However, evaluating whether nearby signals may share causal variants, termed colocalization, is affected by the presence of allelic heterogeneity, different variants at the same locus impacting the same phenotype. We previously identified eQTL in subcutaneous adipose tissue from 770 participants in the Metabolic Syndrome in Men (METSIM) study and detected 15 eQTL signals that colocalized with GWAS signals for waist-hip ratio adjusted for body mass index (WHRadjBMI) from the Genetic Investigation of Anthropometric Traits consortium. Here, we reevaluated evidence of colocalization using two approaches, conditional analysis and the Bayesian test COLOC, and show that providing COLOC with approximate conditional summary statistics at multi-signal GWAS loci can reconcile disagreements in colocalization classification between the two tests. Next, we performed conditional analysis on the METSIM subcutaneous adipose tissue data to identify conditionally distinct or secondary eQTL signals. We used the two approaches to test for colocalization with WHRadjBMI GWAS signals and evaluated the differences in colocalization classification between the two tests. Through these analyses, we identified four GWAS signals colocalized with secondary eQTL signals for FAM13A, SSR3, GRB14 and FMO1. Thus, at loci with multiple eQTL and/or GWAS signals, analyzing each signal independently enabled additional candidate genes to be identified.


Asunto(s)
Tejido Adiposo/fisiología , Distribución de la Grasa Corporal , Estudio de Asociación del Genoma Completo/métodos , Síndrome Metabólico/genética , Sitios de Carácter Cuantitativo , Adulto , Teorema de Bayes , Índice de Masa Corporal , Femenino , Predisposición Genética a la Enfermedad , Humanos , Desequilibrio de Ligamiento , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Grasa Subcutánea/metabolismo , Relación Cintura-Cadera/métodos
10.
Am J Hum Genet ; 102(4): 620-635, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625024

RESUMEN

Genome-wide association studies (GWASs) and functional genomics approaches implicate enhancer disruption in islet dysfunction and type 2 diabetes (T2D) risk. We applied genetic fine-mapping and functional (epi)genomic approaches to a T2D- and proinsulin-associated 15q22.2 locus to identify a most likely causal variant, determine its direction of effect, and elucidate plausible target genes. Fine-mapping and conditional analyses of proinsulin levels of 8,635 non-diabetic individuals from the METSIM study support a single association signal represented by a cluster of 16 strongly associated (p < 10-17) variants in high linkage disequilibrium (r2 > 0.8) with the GWAS index SNP rs7172432. These variants reside in an evolutionarily and functionally conserved islet and ß cell stretch or super enhancer; the most strongly associated variant (rs7163757, p = 3 × 10-19) overlaps a conserved islet open chromatin site. DNA sequence containing the rs7163757 risk allele displayed 2-fold higher enhancer activity than the non-risk allele in reporter assays (p < 0.01) and was differentially bound by ß cell nuclear extract proteins. Transcription factor NFAT specifically potentiated risk-allele enhancer activity and altered patterns of nuclear protein binding to the risk allele in vitro, suggesting that it could be a factor mediating risk-allele effects. Finally, the rs7163757 proinsulin-raising and T2D risk allele (C) was associated with increased expression of C2CD4B, and possibly C2CD4A, both of which were induced by inflammatory cytokines, in human islets. Together, these data suggest that rs7163757 contributes to genetic risk of islet dysfunction and T2D by increasing NFAT-mediated islet enhancer activity and modulating C2CD4B, and possibly C2CD4A, expression in (patho)physiologic states.


Asunto(s)
Proteínas de Unión al Calcio/genética , Secuencia Conservada , Elementos de Facilitación Genéticos/genética , Evolución Molecular , Islotes Pancreáticos/patología , Mutación/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Anciano , Alelos , Animales , Secuencia de Bases , Proteínas de Unión al Calcio/metabolismo , Línea Celular , Cromatina/metabolismo , Cromosomas Humanos Par 15/genética , Citocinas/metabolismo , ADN Intergénico/genética , Humanos , Mediadores de Inflamación/metabolismo , Ratones , Persona de Mediana Edad , Factores de Transcripción NFATC/metabolismo , Mapeo Físico de Cromosoma , Polimorfismo de Nucleótido Simple/genética , Proinsulina/metabolismo , Ratas , Factores de Riesgo
11.
Hum Mol Genet ; 27(10): 1830-1846, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29566149

RESUMEN

Most epigenome-wide association studies to date have been conducted in blood. However, metabolic syndrome is mediated by a dysregulation of adiposity and therefore it is critical to study adipose tissue in order to understand the effects of this syndrome on epigenomes. To determine if natural variation in DNA methylation was associated with metabolic syndrome traits, we profiled global methylation levels in subcutaneous abdominal adipose tissue. We measured association between 32 clinical traits related to diabetes and obesity in 201 people from the Metabolic Syndrome in Men cohort. We performed epigenome-wide association studies between DNA methylation levels and traits, and identified associations for 13 clinical traits in 21 loci. We prioritized candidate genes in these loci using expression quantitative trait loci, and identified 18 high confidence candidate genes, including known and novel genes associated with diabetes and obesity traits. Using methylation deconvolution, we examined which cell types may be mediating the associations, and concluded that most of the loci we identified were specific to adipocytes. We determined whether the abundance of cell types varies with metabolic traits, and found that macrophages increased in abundance with the severity of metabolic syndrome traits. Finally, we developed a DNA methylation-based biomarker to assess type 2 diabetes risk in adipose tissue. In conclusion, our results demonstrate that profiling DNA methylation in adipose tissue is a powerful tool for understanding the molecular effects of metabolic syndrome on adipose tissue, and can be used in conjunction with traditional genetic analyses to further characterize this disorder.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética , Síndrome Metabólico/genética , Obesidad/genética , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Adulto , Anciano , Biopsia , Índice de Masa Corporal , Islas de CpG/genética , Regulación de la Expresión Génica , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Síndrome Metabólico/metabolismo , Síndrome Metabólico/fisiopatología , Persona de Mediana Edad , Obesidad/metabolismo , Obesidad/fisiopatología , Sitios de Carácter Cuantitativo/genética
12.
Hum Mol Genet ; 27(9): 1664-1674, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29481666

RESUMEN

Comprehensive metabolite profiling captures many highly heritable traits, including amino acid levels, which are potentially sensitive biomarkers for disease pathogenesis. To better understand the contribution of genetic variation to amino acid levels, we performed single variant and gene-based tests of association between nine serum amino acids (alanine, glutamine, glycine, histidine, isoleucine, leucine, phenylalanine, tyrosine, and valine) and 16.6 million genotyped and imputed variants in 8545 non-diabetic Finnish men from the METabolic Syndrome In Men (METSIM) study with replication in Northern Finland Birth Cohort (NFBC1966). We identified five novel loci associated with amino acid levels (P = < 5×10-8): LOC157273/PPP1R3B with glycine (rs9987289, P = 2.3×10-26); ZFHX3 (chr16:73326579, minor allele frequency (MAF) = 0.42%, P = 3.6×10-9), LIPC (rs10468017, P = 1.5×10-8), and WWOX (rs9937914, P = 3.8×10-8) with alanine; and TRIB1 with tyrosine (rs28601761, P = 8×10-9). Gene-based tests identified two novel genes harboring missense variants of MAF <1% that show aggregate association with amino acid levels: PYCR1 with glycine (Pgene = 1.5×10-6) and BCAT2 with valine (Pgene = 7.4×10-7); neither gene was implicated by single variant association tests. These findings are among the first applications of gene-based tests to identify new loci for amino acid levels. In addition to the seven novel gene associations, we identified five independent signals at established amino acid loci, including two rare variant signals at GLDC (rs138640017, MAF=0.95%, Pconditional = 5.8×10-40) with glycine levels and HAL (rs141635447, MAF = 0.46%, Pconditional = 9.4×10-11) with histidine levels. Examination of all single variant association results in our data revealed a strong inverse relationship between effect size and MAF (Ptrend<0.001). These novel signals provide further insight into the molecular mechanisms of amino acid metabolism and potentially, their perturbations in disease.


Asunto(s)
Aminoácidos/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Finlandia , Frecuencia de los Genes/genética , Genotipo , Humanos , Masculino , Persona de Mediana Edad
13.
Am J Hum Genet ; 100(3): 428-443, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28257690

RESUMEN

Subcutaneous adipose tissue stores excess lipids and maintains energy balance. We performed expression quantitative trait locus (eQTL) analyses by using abdominal subcutaneous adipose tissue of 770 extensively phenotyped participants of the METSIM study. We identified cis-eQTLs for 12,400 genes at a 1% false-discovery rate. Among an approximately 680 known genome-wide association study (GWAS) loci for cardio-metabolic traits, we identified 140 coincident cis-eQTLs at 109 GWAS loci, including 93 eQTLs not previously described. At 49 of these 140 eQTLs, gene expression was nominally associated (p < 0.05) with levels of the GWAS trait. The size of our dataset enabled identification of five loci associated (p < 5 × 10-8) with at least five genes located >5 Mb away. These trans-eQTL signals confirmed and extended the previously reported KLF14-mediated network to 55 target genes, validated the CIITA regulation of class II MHC genes, and identified ZNF800 as a candidate master regulator. Finally, we observed similar expression-clinical trait correlations of genes associated with GWAS loci in both humans and a panel of genetically diverse mice. These results provide candidate genes for further investigation of their potential roles in adipose biology and in regulating cardio-metabolic traits.


Asunto(s)
Enfermedades Cardiovasculares/genética , Regulación de la Expresión Génica , Síndrome Metabólico/genética , Sitios de Carácter Cuantitativo , Grasa Subcutánea/metabolismo , Anciano , Animales , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje , Humanos , Masculino , Ratones , Persona de Mediana Edad , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Reproducibilidad de los Resultados , Transactivadores/genética , Transactivadores/metabolismo
14.
BMC Med Imaging ; 20(1): 73, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611329

RESUMEN

BACKGROUND: Left ventricle rotation and torsion are fundamental components of myocardial function, and several software packages have been developed for analysis of these components. The purpose of this study was to compare the suitability of two software packages with different technical principles for analysis of rotation and torsion of the left ventricle during systole. METHODS: A group of hypertrophic cardiomyopathy (HCM) patients (N = 14, age 43 ± 11 years), mutation carriers without hypertrophy (N = 10, age 34 ± 13 years), and healthy relatives (N = 12, age 43 ± 17 years) underwent a cardiovascular magnetic resonance examination, including spatial modulation of magnetization tagging sequences in basal and apical planes of the left ventricle. The tagging images were analyzed offline using a harmonic phase image analysis method with Gabor filtering and a non-rigid registration-based free-form deformation technique. Left-ventricle rotation and torsion scores were obtained from end-diastole to end-systole with both software. RESULTS: Analysis was successful in all cases with both software applications. End-systolic torsion values between the study groups were not statistically different with either software. End-systolic apical rotation, end-systolic basal rotation, and end-systolic torsion were consistently higher when analyzed with non-rigid registration than with harmonic phase-based analysis (p <  0.0001). End-systolic rotation and torsion values had significant correlations between the two software (p <  0.0001), most significant in the apical plane. CONCLUSIONS: When comparing absolute values of rotation and torsion between different individuals, software-specific reference values are required. Harmonic phase flow with Gabor filtering and non-rigid registration-based methods can both be used reliably in the analysis of systolic rotation and torsion patterns of the left ventricle.


Asunto(s)
Cardiomiopatía Hipertrófica/diagnóstico por imagen , Ventrículos Cardíacos/diagnóstico por imagen , Imagen por Resonancia Cinemagnética/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Adulto , Cardiomiopatía Hipertrófica/genética , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Variaciones Dependientes del Observador , Programas Informáticos , Adulto Joven
15.
PLoS Genet ; 13(10): e1007079, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29084231

RESUMEN

Lipid and lipoprotein subclasses are associated with metabolic and cardiovascular diseases, yet the genetic contributions to variability in subclass traits are not fully understood. We conducted single-variant and gene-based association tests between 15.1M variants from genome-wide and exome array and imputed genotypes and 72 lipid and lipoprotein traits in 8,372 Finns. After accounting for 885 variants at 157 previously identified lipid loci, we identified five novel signals near established loci at HIF3A, ADAMTS3, PLTP, LCAT, and LIPG. Four of the signals were identified with a low-frequency (0.005

Asunto(s)
Frecuencia de los Genes/genética , Metabolismo de los Lípidos/genética , Lípidos/genética , Lipoproteínas/genética , Polimorfismo de Nucleótido Simple/genética , Triglicéridos/genética , Población Blanca/genética , HDL-Colesterol/genética , Exoma/genética , Finlandia , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Análisis de Componente Principal/métodos
16.
J Cell Mol Med ; 23(4): 2753-2768, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30734465

RESUMEN

Type 2 Diabetes Mellitus (T2DM) is the most prevalent form of diabetes in the USA, thus, the identification of biomarkers that could be used to predict the progression from prediabetes to T2DM would be greatly beneficial. Recently, circulating RNA including microRNAs (miRNAs) present in various body fluids have emerged as potential biomarkers for various health conditions, including T2DM. Whereas studies that examine the changes of miRNA spectra between healthy controls and T2DM individuals have been reported, the goal of this study is to conduct a baseline comparison of prediabetic individuals who either progress to T2DM, or remain prediabetic. Using an advanced small RNA sequencing library construction method that improves the detection of miRNA species, we identified 57 miRNAs that showed significant concentration differences between progressors (progress from prediabetes to T2DM) and non-progressors. Among them, 26 have been previously reported to be associated with T2DM in either body fluids or tissue samples. Some of the miRNAs identified were also affected by obesity. Furthermore, we identified miRNA panels that are able to discriminate progressors from non-progressors. These results suggest that upon further validation these miRNAs may be useful to predict the risk of conversion to T2DM from prediabetes.


Asunto(s)
Biomarcadores/sangre , Ácidos Nucleicos Libres de Células/sangre , Diabetes Mellitus Tipo 2/diagnóstico , MicroARNs/sangre , Anciano , Estudios de Casos y Controles , Ácidos Nucleicos Libres de Células/genética , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/genética , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Pronóstico
17.
Mol Cell ; 44(2): 177-90, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-21856199

RESUMEN

Acetylation is increasingly recognized as an important metabolic regulatory posttranslational protein modification, yet the metabolic consequence of mitochondrial protein hyperacetylation is unknown. We find that high-fat diet (HFD) feeding induces hepatic mitochondrial protein hyperacetylation in mice and downregulation of the major mitochondrial protein deacetylase SIRT3. Mice lacking SIRT3 (SIRT3KO) placed on a HFD show accelerated obesity, insulin resistance, hyperlipidemia, and steatohepatitis compared to wild-type (WT) mice. The lipogenic enzyme stearoyl-CoA desaturase 1 is highly induced in SIRT3KO mice, and its deletion rescues both WT and SIRT3KO mice from HFD-induced hepatic steatosis and insulin resistance. We further identify a single nucleotide polymorphism in the human SIRT3 gene that is suggestive of a genetic association with the metabolic syndrome. This polymorphism encodes a point mutation in the SIRT3 protein, which reduces its overall enzymatic efficiency. Our findings show that loss of SIRT3 and dysregulation of mitochondrial protein acetylation contribute to the metabolic syndrome.


Asunto(s)
Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Proteínas Mitocondriales/metabolismo , Sirtuina 3/genética , Acetilación , Animales , Dieta Alta en Grasa , Humanos , Ratones , Ratones Noqueados , Modelos Biológicos , Sirtuina 3/metabolismo
18.
Am J Hum Genet ; 97(6): 801-15, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26637976

RESUMEN

Genome-wide association studies (GWASs) have identified more than 150 loci associated with blood lipid and cholesterol levels; however, the functional and molecular mechanisms for many associations are unknown. We examined the functional regulatory effects of candidate variants at the GALNT2 locus associated with high-density lipoprotein cholesterol (HDL-C). Fine-mapping and conditional analyses in the METSIM study identified a single locus harboring 25 noncoding variants (r(2) > 0.7 with the lead GWAS variants) strongly associated with total cholesterol in medium-sized HDL (e.g., rs17315646, p = 3.5 × 10(-12)). We used luciferase reporter assays in HepG2 cells to test all 25 variants for allelic differences in regulatory enhancer activity. rs2281721 showed allelic differences in transcriptional activity (75-fold [T] versus 27-fold [C] more than the empty-vector control), as did a separate 780-bp segment containing rs4846913, rs2144300, and rs6143660 (49-fold [AT(-) haplotype] versus 16-fold [CC(+) haplotype] more). Using electrophoretic mobility shift assays, we observed differential CEBPB binding to rs4846913, and we confirmed this binding in a native chromatin context by performing chromatin-immunoprecipitation (ChIP) assays in HepG2 and Huh-7 cell lines of differing genotypes. Additionally, sequence reads in HepG2 DNase-I-hypersensitivity and CEBPB ChIP-seq signals spanning rs4846913 showed significant allelic imbalance. Allelic-expression-imbalance assays performed with RNA from primary human hepatocyte samples and expression-quantitative-trait-locus (eQTL) data in human subcutaneous adipose tissue samples confirmed that alleles associated with increased HDL-C are associated with a modest increase in GALNT2 expression. Together, these data suggest that at least rs4846913 and rs2281721 play key roles in influencing GALNT2 expression at this HDL-C locus.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/genética , HDL-Colesterol/genética , Genoma Humano , N-Acetilgalactosaminiltransferasas/genética , Sitios de Carácter Cuantitativo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Alelos , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , HDL-Colesterol/metabolismo , Cromatina/química , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Mapeo Cromosómico , Ensayo de Cambio de Movilidad Electroforética , Frecuencia de los Genes , Genes Reporteros , Estudio de Asociación del Genoma Completo , Haplotipos , Células Hep G2 , Humanos , Luciferasas/genética , Luciferasas/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , Cultivo Primario de Células , Unión Proteica , Polipéptido N-Acetilgalactosaminiltransferasa
19.
J Cell Sci ; 129(14): 2732-43, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27235420

RESUMEN

Mutation of the LMNA gene, encoding nuclear lamin A and lamin C (hereafter lamin A/C), is a common cause of familial dilated cardiomyopathy (DCM). Among Finnish DCM patients, the founder mutation c.427T>C (p.S143P) is the most frequently reported genetic variant. Here, we show that p.S143P lamin A/C is more nucleoplasmic and soluble than wild-type lamin A/C and accumulates into large intranuclear aggregates in a fraction of cultured patient fibroblasts as well as in cells ectopically expressing either FLAG- or GFP-tagged p.S143P lamin A. In fluorescence loss in photobleaching (FLIP) experiments, non-aggregated EGFP-tagged p.S143P lamin A was significantly more dynamic. In in vitro association studies, p.S143P lamin A failed to form appropriate filament structures but instead assembled into disorganized aggregates similar to those observed in patient cell nuclei. A whole-genome expression analysis revealed an elevated unfolded protein response (UPR) in cells expressing p.S143P lamin A/C. Additional endoplasmic reticulum (ER) stress induced by tunicamycin reduced the viability of cells expressing mutant lamin further. In summary, p.S143P lamin A/C affects normal lamina structure and influences the cellular stress response, homeostasis and viability.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Estrés del Retículo Endoplásmico , Lamina Tipo A/metabolismo , Mutación/genética , Biomarcadores/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patología , Fibroblastos/ultraestructura , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Proteínas Mutantes/metabolismo , Agregado de Proteínas , Transfección , Regulación hacia Arriba
20.
Ann Neurol ; 82(1): 128-132, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28556232

RESUMEN

We investigated the association of Alzheimer's disease (AD)-related rare variants APP A673T and ABCA7 rs200538373-C with the levels of ß-amyloid (Aß) and parameters of metabolic and cardiovascular health in a population-based cohort of healthy middle-aged and elderly men. Carriers of protective APP A673T variant had, on average, 28% lower levels of Aß40 and Aß42 in plasma as compared to the controls and the carriers of ABCA7 rs200538373-C. This is the first report to show decreased Aß levels in plasma in APP A673T carriers and thus provides evidence that lower Aß levels throughout life may be protective against AD. Ann Neurol 2017;82:128-132.


Asunto(s)
Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Transportadoras de Casetes de Unión a ATP/genética , Enfermedad de Alzheimer/sangre , Péptidos beta-Amiloides/sangre , Estudios de Casos y Controles , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Mutación , Fragmentos de Péptidos/sangre , Factores Protectores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA