Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 149(4): 899-911, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22579290

RESUMEN

Fragile X syndrome (FXS), the leading monogenic cause of intellectual disability and autism, results from loss of function of the RNA-binding protein FMRP. Here, we show that FMRP regulates translation of neuronal nitric oxide synthase 1 (NOS1) in the developing human neocortex. Whereas NOS1 mRNA is widely expressed, NOS1 protein is transiently coexpressed with FMRP during early synaptogenesis in layer- and region-specific pyramidal neurons. These include midfetal layer 5 subcortically projecting neurons arranged into alternating columns in the prospective Broca's area and orofacial motor cortex. Human NOS1 translation is activated by FMRP via interactions with coding region binding motifs absent from mouse Nos1 mRNA, which is expressed in mouse pyramidal neurons, but not efficiently translated. Correspondingly, neocortical NOS1 protein levels are severely reduced in developing human FXS cases, but not FMRP-deficient mice. Thus, alterations in FMRP posttranscriptional regulation of NOS1 in developing neocortical circuits may contribute to cognitive dysfunction in FXS.


Asunto(s)
Corteza Cerebral/embriología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/embriología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Animales , Corteza Cerebral/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/fisiopatología , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Neurogénesis , Células Piramidales/metabolismo , Procesamiento Postranscripcional del ARN , Especificidad de la Especie
2.
PLoS Biol ; 21(4): e3002078, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37079499

RESUMEN

Down syndrome (DS) is caused by the trisomy of human chromosome 21 (HSA21). A major challenge in DS research is to identify the HSA21 genes that cause specific symptoms. Down syndrome cell adhesion molecule (DSCAM) is encoded by a HSA21 gene. Previous studies have shown that the protein level of the Drosophila homolog of DSCAM determines the size of presynaptic terminals. However, whether the triplication of DSCAM contributes to presynaptic development in DS remains unknown. Here, we show that DSCAM levels regulate GABAergic synapses formed on neocortical pyramidal neurons (PyNs). In the Ts65Dn mouse model for DS, where DSCAM is overexpressed due to DSCAM triplication, GABAergic innervation of PyNs by basket and chandelier interneurons is increased. Genetic normalization of DSCAM expression rescues the excessive GABAergic innervations and the increased inhibition of PyNs. Conversely, loss of DSCAM impairs GABAergic synapse development and function. These findings demonstrate excessive GABAergic innervation and synaptic transmission in the neocortex of DS mouse models and identify DSCAM overexpression as the cause. They also implicate dysregulated DSCAM levels as a potential pathogenic driver in related neurological disorders.


Asunto(s)
Síndrome de Down , Neocórtex , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patología , Drosophila , Interneuronas/metabolismo , Terminales Presinápticos/metabolismo , Sinapsis/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(32): e2116956119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35930666

RESUMEN

Histone variants, which can be expressed outside of S-phase and deposited DNA synthesis-independently, provide long-term histone replacement in postmitotic cells, including neurons. Beyond replenishment, histone variants also play active roles in gene regulation by modulating chromatin states or enabling nucleosome turnover. Here, we uncover crucial roles for the histone H3 variant H3.3 in neuronal development. We find that newborn cortical excitatory neurons, which have only just completed replication-coupled deposition of canonical H3.1 and H3.2, substantially accumulate H3.3 immediately postmitosis. Codeletion of H3.3-encoding genes H3f3a and H3f3b from newly postmitotic neurons abrogates H3.3 accumulation, markedly alters the histone posttranslational modification landscape, and causes widespread disruptions to the establishment of the neuronal transcriptome. These changes coincide with developmental phenotypes in neuronal identities and axon projections. Thus, preexisting, replication-dependent histones are insufficient for establishing neuronal chromatin and transcriptome; de novo H3.3 is required. Stage-dependent deletion of H3f3a and H3f3b from 1) cycling neural progenitor cells, 2) neurons immediately postmitosis, or 3) several days later, reveals the first postmitotic days to be a critical window for de novo H3.3. After H3.3 accumulation within this developmental window, codeletion of H3f3a and H3f3b does not lead to immediate H3.3 loss, but causes progressive H3.3 depletion over several months without widespread transcriptional disruptions or cellular phenotypes. Our study thus uncovers key developmental roles for de novo H3.3 in establishing neuronal chromatin, transcriptome, identity, and connectivity immediately postmitosis that are distinct from its role in maintaining total histone H3 levels over the neuronal lifespan.


Asunto(s)
Corteza Cerebral , Cromatina , Histonas , Neurogénesis , Animales , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Cromatina/genética , Cromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Ratones , Mitosis , Neuronas/metabolismo , Nucleosomas/genética , Transcriptoma
4.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34011608

RESUMEN

Loss-of-function mutations in chromatin remodeler gene ARID1A are a cause of Coffin-Siris syndrome, a developmental disorder characterized by dysgenesis of corpus callosum. Here, we characterize Arid1a function during cortical development and find unexpectedly selective roles for Arid1a in subplate neurons (SPNs). SPNs, strategically positioned at the interface of cortical gray and white matter, orchestrate multiple developmental processes indispensable for neural circuit wiring. We find that pancortical deletion of Arid1a leads to extensive mistargeting of intracortical axons and agenesis of corpus callosum. Sparse Arid1a deletion, however, does not autonomously misroute callosal axons, implicating noncell-autonomous Arid1a functions in axon guidance. Supporting this possibility, the ascending axons of thalamocortical neurons, which are not autonomously affected by cortical Arid1a deletion, are also disrupted in their pathfinding into cortex and innervation of whisker barrels. Coincident with these miswiring phenotypes, which are reminiscent of subplate ablation, we unbiasedly find a selective loss of SPN gene expression following Arid1a deletion. In addition, multiple characteristics of SPNs crucial to their wiring functions, including subplate organization, subplate axon-thalamocortical axon cofasciculation ("handshake"), and extracellular matrix, are severely disrupted. To empirically test Arid1a sufficiency in subplate, we generate a cortical plate deletion of Arid1a that spares SPNs. In this model, subplate Arid1a expression is sufficient for subplate organization, subplate axon-thalamocortical axon cofasciculation, and subplate extracellular matrix. Consistent with these wiring functions, subplate Arid1a sufficiently enables normal callosum formation, thalamocortical axon targeting, and whisker barrel development. Thus, Arid1a is a multifunctional regulator of subplate-dependent guidance mechanisms essential to cortical circuit wiring.


Asunto(s)
Corteza Cerebral/metabolismo , Cromatina/química , Cuerpo Calloso/metabolismo , Proteínas de Unión al ADN/genética , Mutación con Pérdida de Función , Tálamo/metabolismo , Factores de Transcripción/genética , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Animales , Corteza Cerebral/patología , Cromatina/metabolismo , Conectoma , Cuerpo Calloso/patología , Proteínas de Unión al ADN/deficiencia , Cara/anomalías , Cara/patología , Eliminación de Gen , Regulación de la Expresión Génica , Sustancia Gris/metabolismo , Sustancia Gris/patología , Deformidades Congénitas de la Mano/genética , Deformidades Congénitas de la Mano/metabolismo , Deformidades Congénitas de la Mano/patología , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Ratones , Ratones Transgénicos , Micrognatismo/genética , Micrognatismo/metabolismo , Micrognatismo/patología , Cuello/anomalías , Cuello/patología , Vías Nerviosas/metabolismo , Vías Nerviosas/patología , Neuronas/metabolismo , Neuronas/patología , Tálamo/patología , Factores de Transcripción/deficiencia , Vibrisas/metabolismo , Vibrisas/patología , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
5.
J Neurosci ; 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35672151

RESUMEN

During mammalian neocortex development, nascent pyramidal neurons migrate along radial glial cells and overtake earlier-born neurons to terminate at the front of the developing cortical plate (CP), leading to the outward expansion of the CP border. While much has been learned about the cellular and molecular mechanisms that underlie the migration of pyramidal neurons, how migrating neurons bypass the preceding neurons at the end of migration to reach their final positions remains poorly understood. Here, we report that Down syndrome cell adhesion molecule (DSCAM) is required for migrating neurons to bypass their post-migratory predecessors during the expansion of the upper cortical layers. DSCAM is a type I transmembrane cell adhesion molecule. It has been linked to Down syndrome through its location in the Down syndrome critical region of Chromosome 21 trisomy and to autism spectrum disorders through loss-of-function mutations. Ex vivo time-lapse imaging demonstrates that DSCAM is required for migrating neurons to bypass their post-migratory predecessors, crossing the CP border to expand the upper cortical layers. In DSCAM-deficient cortices, migrating neurons stop prematurely under the CP border, leading to thinner and denser upper cortical layers. We further show that DSCAM weakens cell adhesion mediated by N-cadherin in the upper cortical plate, allowing migrating neurons to traverse the CP border and expand the CP. These findings suggest that DSCAM is required for proper migratory termination and final positioning of nascent pyramidal neurons, which may provide insight into brain disorders that exhibit thinner upper layers of the cerebral cortex without neuronal loss.SIGNIFICANCE STATEMENTNewly born neurons in the developing mammalian neocortex migrate outward towards the cortical surface, bypassing earlier born neurons to expand the developing cortex. How migrating neurons bypass the preceding neurons and terminate at the front of the expanding cortex remains poorly understood. We demonstrate that Down syndrome cell adhesion molecule (DSCAM), linked to Down syndrome and autism spectrum disorder, is required by migrating neurons to bypass their post-migratory predecessors and terminate migration in the outwardly expanding cortical layer. Migrating neurons deficient in DSCAM stop prematurely, failing to expand the cortex. We further show that DSCAM likely mediates migratory termination by weakening cell-adhesion mediated by N-cadherin.

6.
Nucleic Acids Res ; 48(3): 1146-1163, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31853540

RESUMEN

Long Interspersed Element-1 (LINE-1) retrotransposition contributes to inter- and intra-individual genetic variation and occasionally can lead to human genetic disorders. Various strategies have been developed to identify human-specific LINE-1 (L1Hs) insertions from short-read whole genome sequencing (WGS) data; however, they have limitations in detecting insertions in complex repetitive genomic regions. Here, we developed a computational tool (PALMER) and used it to identify 203 non-reference L1Hs insertions in the NA12878 benchmark genome. Using PacBio long-read sequencing data, we identified L1Hs insertions that were absent in previous short-read studies (90/203). Approximately 81% (73/90) of the L1Hs insertions reside within endogenous LINE-1 sequences in the reference assembly and the analysis of unique breakpoint junction sequences revealed 63% (57/90) of these L1Hs insertions could be genotyped in 1000 Genomes Project sequences. Moreover, we observed that amplification biases encountered in single-cell WGS experiments led to a wide variation in L1Hs insertion detection rates between four individual NA12878 cells; under-amplification limited detection to 32% (65/203) of insertions, whereas over-amplification increased false positive calls. In sum, these data indicate that L1Hs insertions are often missed using standard short-read sequencing approaches and long-read sequencing approaches can significantly improve the detection of L1Hs insertions present in individual genomes.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , Análisis de Secuencia de ADN/métodos , Línea Celular , Genoma Humano , Humanos , Polimorfismo Genético , Análisis de la Célula Individual , Programas Informáticos , Secuenciación Completa del Genoma
7.
J Neurosci ; 40(19): 3720-3740, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32273484

RESUMEN

Nestin, an intermediate filament protein widely used as a marker of neural progenitors, was recently found to be expressed transiently in developing cortical neurons in culture and in developing mouse cortex. In young cortical cultures, nestin regulates axonal growth cone morphology. In addition, nestin, which is known to bind the neuronal cdk5/p35 kinase, affects responses to axon guidance cues upstream of cdk5, specifically, to Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, and changes in microtubules and actin filaments are well studied. In contrast, the roles of intermediate filament proteins in this process are poorly understood, even in cultured neurons. Here, we investigate the molecular mechanism by which nestin affects growth cone morphology and Sema3a sensitivity. We find that nestin selectively facilitates the phosphorylation of the lissencephaly-linked protein doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected by nestin. We uncover that this substrate selectivity is based on the ability of nestin to interact with DCX, but not with other cdk5 substrates. Nestin thus creates a selective scaffold for DCX with activated cdk5/p35. Last, we use cortical cultures derived from Dcx KO mice to show that the effects of nestin on growth cone morphology and on Sema3a sensitivity are DCX-dependent, thus suggesting a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating the intracellular kinase signaling environment in developing neurons. The sex of animal subjects is unknown.SIGNIFICANCE STATEMENT Nestin, an intermediate filament protein highly expressed in neural progenitors, was recently identified in developing neurons where it regulates growth cone morphology and responsiveness to the guidance cue Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, but the roles of intermediate filaments in this process are poorly understood. We now report that nestin selectively facilitates phosphorylation of the lissencephaly-linked doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected. This substrate selectivity is based on preferential scaffolding of DCX, cdk5, and p35 by nestin. Additionally, we demonstrate a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating intracellular kinase signaling in developing neurons.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Nestina/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Animales , Células COS , Chlorocebus aethiops , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Femenino , Conos de Crecimiento/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Semaforina-3A/metabolismo
8.
J Neurosci ; 38(10): 2399-2412, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29437890

RESUMEN

Transcriptional programs instruct the generation and maintenance of diverse subtypes of neural cells, establishment of distinct brain regions, formation and function of neural circuits, and ultimately behavior. Spatiotemporal and cell type-specific analyses of the transcriptome, the sum total of all RNA transcripts in a cell or an organ, can provide insights into the role of genes in brain development and function, and their potential contribution to disorders of the brain. In the previous decade, advances in sequencing technology and funding from the National Institutes of Health and private foundations for large-scale genomics projects have led to a growing collection of brain transcriptome databases. These valuable resources provide rich and high-quality datasets with spatiotemporal, cell type-specific, and single-cell precision. Most importantly, many of these databases are publicly available via user-friendly web interface, making the information accessible to individual scientists without the need for advanced computational expertise. Here, we highlight key publicly available brain transcriptome databases, summarize the tissue sources and methods used to generate the data, and discuss their utility for neuroscience research.


Asunto(s)
Química Encefálica/genética , Bases de Datos Genéticas , Transcriptoma/genética , Animales , Biología Computacional , Regulación de la Expresión Génica , Humanos
9.
Hum Mol Genet ; 26(1): 192-209, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28082376

RESUMEN

Local mRNA translation in growing axons allows for rapid and precise regulation of protein expression in response to extrinsic stimuli. However, the role of local translation in mature CNS axons is unknown. Such a mechanism requires the presence of translational machinery and associated mRNAs in circuit-integrated brain axons. Here we use a combination of genetic, quantitative imaging and super-resolution microscopy approaches to show that mature axons in the mammalian brain contain ribosomes, the translational regulator FMRP and a subset of FMRP mRNA targets. This axonal translational machinery is associated with Fragile X granules (FXGs), which are restricted to axons in a stereotyped subset of brain circuits. FXGs and associated axonal translational machinery are present in hippocampus in humans as old as 57 years. This FXG-associated axonal translational machinery is present in adult rats, even when adult neurogenesis is blocked. In contrast, in mouse this machinery is only observed in juvenile hippocampal axons. This differential developmental expression was specific to the hippocampus, as both mice and rats exhibit FXGs in mature axons in the adult olfactory system. Experiments in Fmr1 null mice show that FMRP regulates axonal protein expression but is not required for axonal transport of ribosomes or its target mRNAs. Axonal translational machinery is thus a feature of adult CNS neurons. Regulation of this machinery by FMRP could support complex behaviours in humans throughout life.


Asunto(s)
Axones/patología , Encéfalo/patología , Gránulos Citoplasmáticos/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , ARN Mensajero/metabolismo , Ribosomas/patología , Adulto , Animales , Axones/metabolismo , Encéfalo/metabolismo , Gránulos Citoplasmáticos/patología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Neurogénesis/genética , Neuronas/metabolismo , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Ribosomas/metabolismo
10.
Nature ; 486(7401): 74-9, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22678282

RESUMEN

The co-emergence of a six-layered cerebral neocortex and its corticospinal output system is one of the evolutionary hallmarks of mammals. However, the genetic programs that underlie their development and evolution remain poorly understood. Here we identify a conserved non-exonic element (E4) that acts as a cortex-specific enhancer for the nearby gene Fezf2 (also known as Fezl and Zfp312), which is required for the specification of corticospinal neuron identity and connectivity. We find that SOX4 and SOX11 functionally compete with the repressor SOX5 in the transactivation of E4. Cortex-specific double deletion of Sox4 and Sox11 leads to the loss of Fezf2 expression, failed specification of corticospinal neurons and, independent of Fezf2, a reeler-like inversion of layers. We show evidence supporting the emergence of functional SOX-binding sites in E4 during tetrapod evolution, and their subsequent stabilization in mammals and possibly amniotes. These findings reveal that SOX transcription factors converge onto a cis-acting element of Fezf2 and form critical components of a regulatory network controlling the identity and connectivity of corticospinal neurons.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica/genética , Neocórtex/embriología , Neocórtex/metabolismo , Médula Espinal/embriología , Médula Espinal/metabolismo , Animales , Axones/metabolismo , Secuencia de Bases , Sitios de Unión , Proteínas de Unión al ADN/genética , Variación Genética/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , Neocórtex/citología , Proteínas del Tejido Nervioso/genética , Especificidad de Órganos , Factores de Transcripción SOXC/metabolismo , Médula Espinal/citología
11.
Proc Natl Acad Sci U S A ; 111(6): 2188-93, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24453220

RESUMEN

In early brain development, ascending thalamocortical axons (TCAs) navigate through the ventral telencephalon (VTel) to reach their target regions in the young cerebral cortex. Descending, deep-layer cortical axons subsequently target appropriate thalamic and subcortical target regions. However, precisely how and when corticothalamic axons (CTAs) identify their appropriate, reciprocal thalamic targets remains unclear. We show here that EphB1 and EphB2 receptors control proper navigation of a subset of TCA and CTA projections through the VTel. We show in vivo that EphB receptor forward signaling and the ephrinB1 ligand are required during the early navigation of L1-CAM(+) thalamic fibers in the VTel, and that the misguided thalamic fibers in EphB1/2 KO mice appear to interact with cortical subregion-specific axon populations during reciprocal cortical axon guidance. As such, our findings suggest that descending cortical axons identify specific TCA subpopulations in the dorsal VTel to coordinate reciprocal cortical-thalamic connectivity in the early developing brain.


Asunto(s)
Axones , Corteza Cerebral/metabolismo , Receptores de la Familia Eph/metabolismo , Transducción de Señal , Tálamo/metabolismo , Animales , Ratones , Ratones Noqueados , Receptores de la Familia Eph/genética
12.
Nature ; 467(7312): 207-10, 2010 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-20729831

RESUMEN

The development of the human cerebral cortex is an orchestrated process involving the generation of neural progenitors in the periventricular germinal zones, cell proliferation characterized by symmetric and asymmetric mitoses, followed by migration of post-mitotic neurons to their final destinations in six highly ordered, functionally specialized layers. An understanding of the molecular mechanisms guiding these intricate processes is in its infancy, substantially driven by the discovery of rare mutations that cause malformations of cortical development. Mapping of disease loci in putative Mendelian forms of malformations of cortical development has been hindered by marked locus heterogeneity, small kindred sizes and diagnostic classifications that may not reflect molecular pathogenesis. Here we demonstrate the use of whole-exome sequencing to overcome these obstacles by identifying recessive mutations in WD repeat domain 62 (WDR62) as the cause of a wide spectrum of severe cerebral cortical malformations including microcephaly, pachygyria with cortical thickening as well as hypoplasia of the corpus callosum. Some patients with mutations in WDR62 had evidence of additional abnormalities including lissencephaly, schizencephaly, polymicrogyria and, in one instance, cerebellar hypoplasia, all traits traditionally regarded as distinct entities. In mice and humans, WDR62 transcripts and protein are enriched in neural progenitors within the ventricular and subventricular zones. Expression of WDR62 in the neocortex is transient, spanning the period of embryonic neurogenesis. Unlike other known microcephaly genes, WDR62 does not apparently associate with centrosomes and is predominantly nuclear in localization. These findings unify previously disparate aspects of cerebral cortical development and highlight the use of whole-exome sequencing to identify disease loci in settings in which traditional methods have proved challenging.


Asunto(s)
Encefalopatías/genética , Encéfalo/anomalías , Análisis Mutacional de ADN/métodos , Proteínas del Tejido Nervioso/genética , Animales , Secuencia de Bases , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Encefalopatías/patología , Proteínas de Ciclo Celular , Femenino , Genes Recesivos , Humanos , Masculino , Ratones , Microcefalia/genética , Microcefalia/patología , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso/metabolismo , Linaje
13.
Development ; 139(9): 1535-46, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22492350

RESUMEN

The cerebral neocortex is segregated into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection (pyramidal) neurons and inhibitory interneurons. Development of the neocortex requires the orchestrated execution of a series of crucial processes, including the migration of young neurons into appropriate positions within the nascent neocortex, and the acquisition of layer-specific neuronal identities and axonal projections. Here, we discuss emerging evidence supporting the notion that the migration and final laminar positioning of cortical neurons are also co-regulated by cell type- and layer-specific transcription factors that play concomitant roles in determining the molecular identity and axonal connectivity of these neurons. These transcriptional programs thus provide direct links between the mechanisms controlling the laminar position and identity of cortical neurons.


Asunto(s)
Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neocórtex/anatomía & histología , Neocórtex/embriología , Neurogénesis/fisiología , Neuronas/citología , Animales , Ratones , Neocórtex/citología , Factores de Transcripción/fisiología
14.
Proc Natl Acad Sci U S A ; 108(7): 3041-6, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21285371

RESUMEN

The corticospinal (CS) tract is involved in controlling discrete voluntary skilled movements in mammals. The CS tract arises exclusively from layer (L) 5 projection neurons of the cerebral cortex, and its formation requires L5 activity of Fezf2 (Fezl, Zfp312). How this L5-specific pattern of Fezf2 expression and CS axonal connectivity is established with such remarkable fidelity had remained elusive. Here we show that the transcription factor TBR1 directly binds the Fezf2 locus and represses its activity in L6 corticothalamic projection neurons to restrict the origin of the CS tract to L5. In Tbr1 null mutants, CS axons ectopically originate from L6 neurons in a Fezf2-dependent manner. Consistently, misexpression of Tbr1 in L5 CS neurons suppresses Fezf2 expression and effectively abolishes the CS tract. Taken together, our findings show that TBR1 is a direct transcriptional repressor of Fezf2 and a negative regulator of CS tract formation that restricts the laminar origin of CS axons specifically to L5.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas del Tejido Nervioso/metabolismo , Tractos Piramidales/embriología , Animales , Axones/patología , Secuencia de Bases , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Luciferasas , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Plásmidos/genética , Tractos Piramidales/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Proteínas de Dominio T Box
15.
Artículo en Inglés | MEDLINE | ID: mdl-38167425

RESUMEN

Conscious perception in mammals depends on precise circuit connectivity between cerebral cortex and thalamus; the evolution and development of these structures are closely linked. During the wiring of reciprocal thalamus-cortex connections, thalamocortical axons (TCAs) first navigate forebrain regions that had undergone substantial evolutionary modifications. In particular, the organization of the pallial-subpallial boundary (PSPB) diverged significantly between mammals, reptiles, and birds. In mammals, transient cell populations in internal capsule and early corticofugal projections from subplate neurons closely interact with TCAs to guide pathfinding through ventral forebrain and PSPB crossing. Prior to thalamocortical axon arrival, cortical areas are initially patterned by intrinsic genetic factors. Thalamocortical axons then innervate cortex in a topographically organized manner to enable sensory input to refine cortical arealization. Here, we review the mechanisms underlying the guidance of thalamocortical axons across forebrain boundaries, the implications of PSPB evolution for thalamocortical axon pathfinding, and the reciprocal influence between thalamus and cortex during development.


Asunto(s)
Neuronas , Tálamo , Animales , Axones/fisiología , Corteza Cerebral , Mamíferos , Vías Nerviosas/fisiología
16.
Neuron ; 111(8): 1168-1170, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37080166

RESUMEN

During cortical development, microtubules simultaneously mediate neuronal migration up toward cortical plate and axon extension down toward white matter. Using new molecular tools to manipulate microtubule nucleation and dynamics, in this issue of Neuron, Vinopal et al.1 identify the distinct microtubule networks underpinning these processes.


Asunto(s)
Axones , Neuronas , Axones/fisiología , Neuronas/fisiología , Microtúbulos , Movimiento Celular/fisiología , Neurogénesis
17.
Neuron ; 57(3): 378-92, 2008 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-18255031

RESUMEN

Pyramidal neurons of the neocortex can be subdivided into two major groups: deep- (DL) and upper-layer (UL) neurons. Here we report that the expression of the AT-rich DNA-binding protein Satb2 defines two subclasses of UL neurons: UL1 (Satb2 positive) and UL2 (Satb2 negative). In the absence of Satb2, UL1 neurons lose their identity and activate DL- and UL2-specific genetic programs. UL1 neurons in Satb2 mutants fail to migrate to superficial layers and do not contribute to the corpus callosum but to the corticospinal tract, which is normally populated by DL axons. Ctip2, a gene required for the formation of the corticospinal tract, is ectopically expressed in all UL1 neurons in the absence of Satb2. Satb2 protein interacts with the Ctip2 genomic region and controls chromatin remodeling at this locus. Satb2 therefore is required for the initiation of the UL1-specific genetic program and for the inactivation of DL- and UL2-specific genes.


Asunto(s)
Proteínas de Unión a la Región de Fijación a la Matriz/fisiología , Mitosis/fisiología , Neocórtex/citología , Neuronas/fisiología , Factores de Transcripción/fisiología , Animales , Carbocianinas/metabolismo , Diferenciación Celular , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Electroporación/métodos , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Neocórtex/embriología , Neocórtex/crecimiento & desarrollo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/genética , Transcripción Genética
18.
Proc Natl Acad Sci U S A ; 105(41): 16021-6, 2008 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-18840685

RESUMEN

Neocortical projection neurons exhibit layer-specific molecular profiles and axonal connections. Here we show that the molecular identities of early-born subplate and deep-layer neurons are not acquired solely during generation or shortly thereafter but undergo progressive postmitotic refinement mediated by SOX5. Fezf2 and Bcl11b, transiently expressed in all subtypes of newly postmigratory early-born neurons, are subsequently downregulated in layer 6 and subplate neurons, thereby establishing their layer 5-enriched postnatal patterns. In Sox5-null mice, this downregulation is disrupted, and layer 6 and subplate neurons maintain an immature differentiation state, abnormally expressing these genes postnatally. Consistent with this disruption, SOX5 binds and represses a conserved enhancer near Fezf2. The Sox5-null neocortex exhibits failed preplate partition and laminar inversion of early-born neurons, loss of layer 5 subcerebral axons, and misrouting of subplate and layer 6 corticothalamic axons to the hypothalamus. Thus, SOX5 postmitotically regulates the migration, postmigratory differentiation, and subcortical projections of subplate and deep-layer neurons.


Asunto(s)
Diferenciación Celular , Movimiento Celular , Extensiones de la Superficie Celular , Neocórtex/citología , Neuronas/citología , Factores de Transcripción SOXD/fisiología , Animales , Moléculas de Adhesión Celular/genética , Proteínas de Unión al ADN/genética , Regulación hacia Abajo/genética , Ratones , Ratones Noqueados , Mitosis , Proteínas Represoras/genética , Proteínas Supresoras de Tumor/genética
19.
Nat Neurosci ; 10(7): 819-27, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17589506

RESUMEN

The polarity and adhesion of radial glial cells (RGCs), which function as progenitors and migrational guides for neurons, are critical for morphogenesis of the cerebral cortex. These characteristics largely depend on cadherin-based adherens junctions, which anchor apical end-feet of adjacent RGCs to each other at the ventricular surface. Here, we show that mouse numb and numb-like are required for maintaining radial glial adherens junctions. Numb accumulates in the apical end-feet, where it localizes to adherens junction-associated vesicles and interacts with cadherins. Numb and Numbl inactivation in RGCs decreases proper basolateral insertion of cadherins and disrupts adherens junctions and polarity, leading to progenitor dispersion and disorganized cortical lamination. Conversely, overexpression of Numb prolongs RGC polarization, in a cadherin-dependent manner, beyond the normal neurogenic period. Thus, by regulating RGC adhesion and polarity, Numb and Numbl are required for the tissue architecture of neurogenic niches and the cerebral cortex.


Asunto(s)
Cadherinas/fisiología , Adhesión Celular/fisiología , Polaridad Celular/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Células Madre/fisiología , Animales , Western Blotting , Células Cultivadas , Ventrículos Cerebrales/fisiología , Electroporación , Endosomas/metabolismo , Humanos , Inmunohistoquímica , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Microscopía Electrónica , ARN/biosíntesis , ARN/genética
20.
Cereb Cortex ; 19(9): 2196-207, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19234067

RESUMEN

Cortical excitatory glutamatergic projection neurons and inhibitory GABAergic interneurons follow substantially different developmental programs. In rodents, projection neurons originate from progenitors within the dorsal forebrain, whereas interneurons arise from progenitors in the ventral forebrain. In contrast, it has been proposed that in humans, the majority of cortical interneurons arise from progenitors within the dorsal forebrain, suggesting that their origin and migration is complex and evolutionarily divergent. However, whether molecularly defined human cortical interneuron subtypes originate from distinct progenitors, including those in the ventral forebrain, remains unknown. Furthermore, abnormalities in cortical interneurons have been linked to human disorders, yet no distinct cell population selective loss has been reported. Here we show that cortical interneurons expressing nitric oxide synthase 1, neuropeptide Y, and somatostatin, are either absent or substantially reduced in fetal and infant cases of human holoprosencephaly (HPE) with severe ventral forebrain hypoplasia. Notably, another interneuron subtype normally abundant from the early fetal period, marked by calretinin expression, and different subtypes of projection neuron were present in the cortex of control and HPE brains. These findings have important implications for the understanding of neuronal pathogenesis underlying the clinical manifestations associated with HPE and the developmental origins of human cortical interneuron diversity.


Asunto(s)
Corteza Cerebral/anomalías , Corteza Cerebral/metabolismo , Cuerpo Estriado/anomalías , Cuerpo Estriado/metabolismo , Holoprosencefalia/metabolismo , Interneuronas/metabolismo , Neurotransmisores/metabolismo , Cuerpo Estriado/patología , Humanos , Recién Nacido , Interneuronas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA