RESUMEN
The implementation of human induced pluripotent stem cell (hiPSC) models has introduced an additional tool for identifying molecular mechanisms of disease that complement animal models. Patient-derived or CRISPR/Cas9-edited induced pluripotent stem cells differentiated into smooth muscle cells (SMCs) have been leveraged to discover novel mechanisms, screen potential therapeutic strategies, and model in vivo development. The field has evolved over almost 15 years of research using hiPSC-SMCs and has made significant strides toward overcoming initial challenges such as the lineage specificity of SMC phenotypes. However, challenges both specific (eg, the lack of specific markers to thoroughly validate hiPSC-SMCs) and general (eg, a lack of transparency and consensus around methodology in the field) remain. In this review, we highlight the recent successes and remaining challenges of the hiPSC-SMC model.
Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Miocitos del Músculo Liso , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/metabolismo , Animales , Fenotipo , Músculo Liso Vascular/patología , Músculo Liso Vascular/metabolismo , Linaje de la CélulaRESUMEN
AIMS: The variant p.Arg149Cys in ACTA2, which encodes smooth muscle cell (SMC)-specific α-actin, predisposes to thoracic aortic disease and early onset coronary artery disease in individuals without cardiovascular risk factors. This study investigated how this variant drives increased atherosclerosis. METHODS AND RESULTS: Apoe-/- mice with and without the variant were fed a high-fat diet for 12 weeks, followed by evaluation of atherosclerotic plaque formation and single-cell transcriptomics analysis. SMCs explanted from Acta2R149C/+ and wildtype (WT) ascending aortas were used to investigate atherosclerosis-associated SMC phenotypic modulation. Hyperlipidemic Acta2R149C/+Apoe-/- mice have a 2.5-fold increase in atherosclerotic plaque burden compared to Apoe-/- mice with no differences in serum lipid levels. At the cellular level, misfolding of the R149C α-actin activates heat shock factor 1, which increases endogenous cholesterol biosynthesis and intracellular cholesterol levels through increased HMG-CoA reductase (HMG-CoAR) expression and activity. The increased cellular cholesterol in Acta2R149C/+ SMCs induces endoplasmic reticulum stress and activates PERK-ATF4-KLF4 signaling to drive atherosclerosis-associated phenotypic modulation in the absence of exogenous cholesterol, while WT cells require higher levels of exogenous cholesterol to drive phenotypic modulation. Treatment with the HMG-CoAR inhibitor pravastatin successfully reverses the increased atherosclerotic plaque burden in Acta2R149C/+Apoe-/- mice. CONCLUSION: These data establish a novel mechanism by which a pathogenic missense variant in a smooth muscle-specific contractile protein predisposes to atherosclerosis in individuals without hypercholesterolemia or other risk factors. The results emphasize the role of increased intracellular cholesterol levels in driving SMC phenotypic modulation and atherosclerotic plaque burden.
Asunto(s)
Aterosclerosis , Hiperlipidemias , Placa Aterosclerótica , Ratones , Animales , Placa Aterosclerótica/complicaciones , Actinas/metabolismo , Ratones Noqueados para ApoE , Aterosclerosis/etiología , Colesterol/metabolismo , Hiperlipidemias/complicaciones , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Músculo Liso/metabolismo , Músculo Liso/patología , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
Wilms' tumor (WT) morphologically resembles the embryonic kidney, consisting of blastema, epithelial and stromal components, suggesting tumors arise from the dysregulation of normal development. ß-Catenin activation is observed in a significant proportion of WTs; however, much remains to be understood about how it contributes to tumorigenesis. Although activating ß-catenin mutations are observed in both blastema and stromal components of WT, current models assume that activation in the blastemal lineage is causal. Paradoxically, studies performed in mice suggest that activation of ß-catenin in the nephrogenic lineage results in loss of nephron progenitor cell (NPC) renewal, a phenotype opposite to WT. Here, we show that activation of ß-catenin in the stromal lineage non-autonomously prevents the differentiation of NPCs. Comparisons of the transcriptomes of kidneys expressing an activated allele of ß-catenin in the stromal or nephron progenitor cells reveals that human WT more closely resembles the stromal-lineage mutants. These findings suggest that stromal ß-catenin activation results in histological and molecular features of human WT, providing insights into how alterations in the stromal microenvironment may play an active role in tumorigenesis.
Asunto(s)
Diferenciación Celular , Nefronas/patología , Células Madre/metabolismo , Tumor de Wilms/metabolismo , Tumor de Wilms/patología , beta Catenina/metabolismo , Animales , Secuencia de Bases , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Linaje de la Célula/genética , Epitelio/embriología , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Integrasas/metabolismo , Mesodermo/embriología , Ratones , Mutación/genética , Nefronas/metabolismo , Organogénesis/genética , Osteogénesis/genética , Células del Estroma/metabolismo , Células del Estroma/patología , Transcriptoma/genética , Tumor de Wilms/genética , beta Catenina/genéticaRESUMEN
BACKGROUND: Vascular smooth muscle cells (SMCs) undergo complex phenotypic modulation with atherosclerotic plaque formation in hyperlipidemic mice, which is characterized by de-differentiation and heterogeneous increases in the expression of macrophage, fibroblast, osteogenic, and stem cell markers. An increase of cellular cholesterol in SMCs triggers similar phenotypic changes in vitro with exposure to free cholesterol due to cholesterol entering the endoplasmic reticulum, triggering endoplasmic reticulum stress and activating Perk (protein kinase RNA-like endoplasmic reticulum kinase) signaling. METHODS: We generated an SMC-specific Perk knockout mouse model, induced hyperlipidemia in the mice by AAV-PCSK9DY injection, and subjected them to a high-fat diet. We then assessed atherosclerotic plaque formation and performed single-cell transcriptomic studies using aortic tissue from these mice. RESULTS: SMC-specific deletion of Perk reduces atherosclerotic plaque formation in male hyperlipidemic mice by 80%. Single-cell transcriptomic data identify 2 clusters of modulated SMCs in hyperlipidemic mice, one of which is absent when Perk is deleted in SMCs. The 2 modulated SMC clusters have significant overlap of transcriptional changes, but the Perk-dependent cluster uniquely shows a global decrease in the number of transcripts. SMC-specific Perk deletion also prevents migration of both contractile and modulated SMCs from the medial layer of the aorta. CONCLUSIONS: Our results indicate that hypercholesterolemia drives both Perk-dependent and Perk-independent SMC modulation and that deficiency of Perk significantly blocks atherosclerotic plaque formation.
Asunto(s)
Aterosclerosis , Miocitos del Músculo Liso , Placa Aterosclerótica , eIF-2 Quinasa , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Células Cultivadas , Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Masculino , Ratones , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo , eIF-2 Quinasa/metabolismoRESUMEN
Pathogenic variants of the gene for smooth muscle α-actin (ACTA2), which encodes smooth muscle (SM) α-actin, predispose to heritable thoracic aortic disease. The ACTA2 variant p.Arg149Cys (R149C) is the most common alteration; however, only 60% of carriers have a dissection or undergo repair of an aneurysm by 70 years of age. A mouse model of ACTA2 p.Arg149Cys was generated using CRISPR/Cas9 technology to determine the etiology of reduced penetrance. Acta2R149C/+ mice had significantly decreased aortic contraction compared with WT mice but did not form aortic aneurysms or dissections when followed to 24 months, even when hypertension was induced. In vitro motility assays found decreased interaction of mutant SM α-actin filaments with SM myosin. Polymerization studies using total internal reflection fluorescence microscopy showed enhanced nucleation of mutant SM α-actin by formin, which correlated with disorganized and reduced SM α-actin filaments in Acta2R149C/+ smooth muscle cells (SMCs). However, the most prominent molecular defect was the increased retention of mutant SM α-actin in the chaperonin-containing t-complex polypeptide folding complex, which was associated with reduced levels of mutant compared with WT SM α-actin in Acta2R149C/+ SMCs. These data indicate that Acta2R149C/+ mice do not develop thoracic aortic disease despite decreased contraction of aortic segments and disrupted SM α-actin filament formation and function in Acta2R149C/+ SMCs. Enhanced binding of mutant SM α-actin to chaperonin-containing t-complex polypeptide decreases the mutant actin versus WT monomer levels in Acta2R149C/+ SMCs, thus minimizing the effect of the mutation on SMC function and potentially preventing aortic disease in the Acta2R149C/+ mice.
Asunto(s)
Actinas/genética , Enfermedades de la Aorta/genética , Chaperonina con TCP-1/metabolismo , Mutación Puntual , Actinas/metabolismo , Animales , Aorta/metabolismo , Aorta/patología , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Ratones , Ratones Endogámicos C57BL , Mutación MissenseRESUMEN
Tatton-Brown-Rahman syndrome is an autosomal dominant overgrowth syndrome caused by pathogenic DNMT3A variants in the germline. Clinical findings of tall stature due to postnatal overgrowth, intellectual disability, and characteristic facial features, are the most consistent findings observed in patients with Tatton-Brown-Rahman syndrome (TBRS). Since the syndrome was first described in 2014, an expanding spectrum of neuropsychiatric, musculoskeletal, neurological, and cardiovascular manifestations have been reported. However, most TBRS cases described in the literature are children with de novo DNMT3A variants, signaling a need to better characterize the phenotypes in adults. In this report, we describe a 34 year old referred to genetics for possible Marfan syndrome with aortic root dilatation, mitral valve prolapse, and dilated cardiomyopathy, who was diagnosed with TBRS due to a heterozygous de novo DNMT3A variant. This represents the third reported TBRS case with aortic root dilation and the second with cardiomyopathy. Collectively, these data provide evidence for an association with aortic disease and cardiomyopathy, highlight the clinical overlap with Marfan syndrome, and suggest that cardiovascular surveillance into adulthood is indicated.
Asunto(s)
Enfermedades de la Aorta , Cardiomiopatía Dilatada , Discapacidad Intelectual , Síndrome de Marfan , Adulto , Enfermedades de la Aorta/complicaciones , Enfermedades de la Aorta/diagnóstico , Enfermedades de la Aorta/genética , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Dilatación , Humanos , Discapacidad Intelectual/genética , Síndrome de Marfan/complicaciones , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , MutaciónRESUMEN
Pathogenic variants in ACTA2, encoding smooth muscle α-actin, predispose to thoracic aortic aneurysms and dissections. ACTA2 variants altering arginine 179 predispose to a more severe, multisystemic disease termed smooth muscle dysfunction syndrome (SMDS; OMIM 613834). Vascular complications of SMDS include patent ductus arteriosus (PDA) or aortopulmonary window, early-onset thoracic aortic disease (TAD), moyamoya-like cerebrovascular disease, and primary pulmonary hypertension. Patients also have dysfunction of other smooth muscle-dependent systems, including congenital mydriasis, hypotonic bladder, and gut hypoperistalsis. Here, we describe five patients with novel heterozygous ACTA2 missense variants, p.Arg179Gly, p.Met46Arg, p.Thr204Ile, p.Arg39Cys, and p.Ile66Asn, who have clinical complications that align or overlap with SMDS. Patients with the ACTA2 p.Arg179Gly and p.Thr204Ile variants display classic features of SMDS. The patient with the ACTA2 p.Met46Arg variant exhibits exclusively vascular complications of SMDS, including early-onset TAD, PDA, and moyamoya-like cerebrovascular disease. The patient with the ACTA2 p.Ile66Asn variant has an unusual vascular complication, a large fusiform internal carotid artery aneurysm. The patient with the ACTA2 p.Arg39Cys variant has pulmonary, gastrointestinal, and genitourinary complications of SMDS but no vascular manifestations. Identifying pathogenic ACTA2 variants associated with features of SMDS is critical for aggressive surveillance and management of vascular and nonvascular complications and delineating the molecular pathogenesis of SMDS.
Asunto(s)
Actinas , Aneurisma de la Aorta Torácica , Trastornos Cerebrovasculares , Conducto Arterioso Permeable , Enfermedad de Moyamoya , Actinas/genética , Aneurisma de la Aorta Torácica/diagnóstico , Aneurisma de la Aorta Torácica/genética , Conducto Arterioso Permeable/genética , Heterocigoto , Humanos , Enfermedad de Moyamoya/genética , Músculo Liso , Mutación , FenotipoRESUMEN
OBJECTIVE: Vascular smooth muscle cells (SMCs) dedifferentiate and initiate expression of macrophage markers with cholesterol exposure. This phenotypic switching is dependent on the transcription factor Klf4 (Krüppel-like factor 4). We investigated the molecular pathway by which cholesterol induces SMC phenotypic switching. Approach and Results: With exposure to free cholesterol, SMCs decrease expression of contractile markers, activate Klf4, and upregulate a subset of macrophage and fibroblast markers characteristic of modulated SMCs that appear with atherosclerotic plaque formation. These phenotypic changes are associated with activation of all 3 pathways of the endoplasmic reticulum unfolded protein response (UPR), Perk (protein kinase RNA-like endoplasmic reticulum kinase), Ire (inositol-requiring enzyme) 1α, and Atf (activating transcription factor) 6. Blocking the movement of cholesterol from the plasma membrane to the endoplasmic reticulum prevents free cholesterol-induced UPR, Klf4 activation, and upregulation of the majority of macrophage and fibroblast markers. Cholesterol-induced phenotypic switching is also prevented by global UPR inhibition or specific inhibition of Perk signaling. Exposure to chemical UPR inducers, tunicamycin and thapsigargin, is sufficient to induce these same phenotypic transitions. Finally, analysis of published single-cell RNA sequencing data during atherosclerotic plaque formation in hyperlipidemic mice provides preliminary in vivo evidence of a role of UPR activation in modulated SMCs. CONCLUSIONS: Our data demonstrate that UPR is necessary and sufficient to drive phenotypic switching of SMCs to cells that resemble modulated SMCs found in atherosclerotic plaques. Preventing a UPR in hyperlipidemic mice diminishes atherosclerotic burden, and our data suggest that preventing SMC transition to dedifferentiated cells expressing macrophage and fibroblast markers contributes to this decreased plaque burden.
Asunto(s)
Transdiferenciación Celular/efectos de los fármacos , Colesterol/toxicidad , Fibroblastos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Factor de Transcripción Activador 4/metabolismo , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Línea Celular , Estrés del Retículo Endoplásmico/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Fenotipo , Placa Aterosclerótica , eIF-2 Quinasa/metabolismoRESUMEN
Thoracic aortic aneurysms leading to acute aortic dissections are a preventable cause of premature deaths if individuals at risk can be identified. Individuals with early-onset aortic dissections without a family history or syndromic features have an increased burden of rare genetic variants of unknown significance (VUSs) in genes with pathogenic variants for heritable thoracic aortic disease (HTAD). We assessed the role of VUSs in the development of disease using both in vitro enzymatic assays and mouse models. VUSs in LOX and MYLK identified in individuals with acute aortic dissections were assayed to determine whether they disrupted enzymatic activity. A subset of VUSs reduced enzymatic activity compared to the wild-type proteins but less than pathogenic variants. Additionally, a Myh11 variant, p.Arg247Cys, which does not cause aortic disease in either humans or mice, was crossed with the Acta2-/- mouse, which has aortic enlargement with age while Acta2+/- mice do not. Acta2+/-Myh11R247C/R247C mice have aortic dilation by 3 months of age without medial degeneration, indicating that two variants not known to cause disease do lead to aortic enlargement in combination. Furthermore, the addition of Myh11R247C/R247C to the Acta2-/- mouse model accelerates aortic enlargement and increases medial degeneration. Therefore, our results emphasize the need for a classification system for variants in Mendelian genes that goes beyond the 5-tier system of pathogenic, likely pathogenic, VUS, likely benign, and benign, and includes a designation for low-penetrant "risk variants" that trigger disease either in combination with other risk factors or in a stochastic manner.
Asunto(s)
Aorta Torácica/patología , Aneurisma de la Aorta Torácica/genética , Enfermedades de la Aorta/genética , Variación Genética/genética , Actinas/genética , Disección Aórtica/genética , Animales , Modelos Animales de Enfermedad , Humanos , RatonesRESUMEN
Fibromuscular dysplasia (FMD) is a heterogeneous group of non-atherosclerotic and non-inflammatory arterial diseases that primarily involves the renal and cerebrovascular arteries. Grange syndrome is an autosomal-recessive condition characterized by severe and early-onset vascular disease similar to FMD and variable penetrance of brachydactyly, syndactyly, bone fragility, and learning disabilities. Exome-sequencing analysis of DNA from three affected siblings with Grange syndrome identified compound heterozygous nonsense variants in YY1AP1, and homozygous nonsense or frameshift YY1AP1 variants were subsequently identified in additional unrelated probands with Grange syndrome. YY1AP1 encodes yin yang 1 (YY1)-associated protein 1 and is an activator of the YY1 transcription factor. We determined that YY1AP1 localizes to the nucleus and is a component of the INO80 chromatin remodeling complex, which is responsible for transcriptional regulation, DNA repair, and replication. Molecular studies revealed that loss of YY1AP1 in vascular smooth muscle cells leads to cell cycle arrest with decreased proliferation and increased levels of the cell cycle regulator p21/WAF/CDKN1A and disrupts TGF-ß-driven differentiation of smooth muscle cells. Identification of YY1AP1 mutations as a cause of FMD indicates that this condition can result from underlying genetic variants that significantly alter the phenotype of vascular smooth muscle cells.
Asunto(s)
Displasia Fibromuscular/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Mutación , Proteínas Nucleares/genética , Factores de Transcripción/genética , Adolescente , Adulto , Huesos/patología , Braquidactilia/genética , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular , Exoma/genética , Femenino , Genes Recesivos , Heterocigoto , Homocigoto , Humanos , Discapacidades para el Aprendizaje/genética , Masculino , Persona de Mediana Edad , Linaje , Sindactilia/genética , SíndromeRESUMEN
Objective- Pharmacological inhibition of the AT1R (angiotensin II type 1 receptor) with losartan can attenuate ascending aortic remodeling induced by transverse aortic constriction (TAC). In this study, we investigated the role of the AT2R (angiotensin II type 2 receptor) and MasR (Mas receptor) in TAC-induced ascending aortic dilation and remodeling. Approach and Results- Wild-type C57BL/6J mice were subjected to sham or TAC surgeries in the presence and absence of various drugs. Aortic diameters were assessed by echocardiography, central blood pressure was measured in the ascending aorta 2 weeks post-operation, and histology and gene expression analyses completed. An angiotensin-converting enzyme inhibitor, captopril, decreased systolic blood pressure to the same level as losartan but did not attenuate aortic dilation, adventitial inflammation, medial collagen deposition, elastin breakage, or Mmp9 (matrix metalloproteinase-9) expression when compared with TAC mice. In contrast, co-administration of captopril with an AT2R agonist, compound 21, attenuated aortic dilation, medial collagen content, elastin breaks, and Mmp9 expression, whereas co-administration of captopril with a MasR agonist (AVE0991) did not reverse aortic dilation and led to aberrant aortic remodeling. An AT2R antagonist, PD123319, reversed the protective effects of losartan in TAC mice. Treatment with compound 21 alone showed no effect on TAC-induced aortic enlargement, blood pressure, elastin breakage, or Mmp9 expression. Conclusions- Our data indicate that when AT1R signaling is blocked, AT2R activation is a key modulator to prevent aortic dilation that occurs with TAC. These data suggest that angiotensin-converting enzyme inhibitor may not be as effective as losartan for slowing aneurysm growth because losartan requires intact AT2R signaling to prevent aortic enlargement.
Asunto(s)
Aneurisma de la Aorta/fisiopatología , Receptor de Angiotensina Tipo 1/fisiología , Receptor de Angiotensina Tipo 2/fisiología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 2 de Angiotensina II/farmacología , Animales , Aorta/fisiopatología , Aneurisma de la Aorta/etiología , Aneurisma de la Aorta/prevención & control , Aortitis/tratamiento farmacológico , Aortitis/etiología , Aortitis/fisiopatología , Fenómenos Biomecánicos , Captopril/farmacología , Constricción , Hipertensión/complicaciones , Hipertensión/fisiopatología , Imidazoles/farmacología , Losartán/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/agonistas , Proteínas Proto-Oncogénicas/fisiología , Piridinas/farmacología , Distribución Aleatoria , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/fisiología , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/fisiología , Remodelación Vascular/efectos de los fármacosRESUMEN
Grange syndrome (OMIM 602531) is an autosomal recessive condition characterized by severe early onset vascular occlusive disease and variable penetrance of brachydactyly, syndactyly, bone fragility, and learning disabilities. Grange syndrome is caused by homozygous or compound heterozygous loss-of-function variants in the YYA1P1 gene. We report on the case of a 53-year old female with novel homozygous missense variants in YYA1P1 (c.1079C>T, p.Pro360Leu), presenting with a history of brachysyndactyly, hypertension, and ischemic stroke. Imaging studies revealed stenosis of the bilateral internal carotid with extensive collateralization of cerebral vessels in a moyamoya-like pattern, along with stenosis in the splenic, common hepatic, celiac, left renal, and superior mesenteric arteries. Functional studies conducted with the patient's dermal fibroblasts suggest that the p.Pro360Leu variant decreases the stability of the YY1AP1 protein. This is the first report of a missense variant associated with Grange syndrome characterized by later onset of vascular disease and a lack of developmental delay and bone fragility.
Asunto(s)
Arteriopatías Oclusivas/diagnóstico , Arteriopatías Oclusivas/genética , Huesos/anomalías , Braquidactilia/diagnóstico , Braquidactilia/genética , Proteínas de Ciclo Celular/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Homocigoto , Hipertensión/diagnóstico , Hipertensión/genética , Mutación Missense , Sindactilia/diagnóstico , Sindactilia/genética , Factores de Transcripción/genética , Línea Celular , Angiografía por Tomografía Computarizada , Consanguinidad , Femenino , Estudios de Asociación Genética/métodos , Humanos , Masculino , Tomografía Computarizada por Rayos XRESUMEN
RATIONALE: Mutations in ACTA2, encoding the smooth muscle isoform of α-actin, cause thoracic aortic aneurysms, acute aortic dissections, and occlusive vascular diseases. OBJECTIVE: We sought to identify the mechanism by which loss of smooth muscle α-actin causes aortic disease. METHODS AND RESULTS: Acta2-/- mice have an increased number of elastic lamellae in the ascending aorta and progressive aortic root dilation as assessed by echocardiography that can be attenuated by treatment with losartan, an angiotensin II (AngII) type 1 receptor blocker. AngII levels are not increased in Acta2-/- aortas or kidneys. Aortic tissue and explanted smooth muscle cells from Acta2-/- aortas show increased production of reactive oxygen species and increased basal nuclear factor κB signaling, leading to an increase in the expression of the AngII receptor type I a and activation of signaling at 100-fold lower levels of AngII in the mutant compared with wild-type cells. Furthermore, disruption of smooth muscle α-actin filaments in wild-type smooth muscle cells by various mechanisms activates nuclear factor κB signaling and increases expression of AngII receptor type I a. CONCLUSIONS: These findings reveal that disruption of smooth muscle α-actin filaments in smooth muscle cells increases reactive oxygen species levels, activates nuclear factor κB signaling, and increases AngII receptor type I a expression, thus potentiating AngII signaling in vascular smooth muscle cells without an increase in the exogenous levels of AngII.
Asunto(s)
Actinas/deficiencia , Angiotensina II/metabolismo , Aorta Torácica/metabolismo , Miocitos del Músculo Liso/metabolismo , FN-kappa B/metabolismo , Receptor de Angiotensina Tipo 1/biosíntesis , Actinas/efectos de los fármacos , Actinas/genética , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/patología , Células Cultivadas , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Distribución Aleatoria , Especies Reactivas de Oxígeno/metabolismo , Receptor de Angiotensina Tipo 1/genéticaRESUMEN
Duplications spanning nine genes at the genomic locus 16p13.1 predispose individuals to acute aortic dissections. The most likely candidate gene in this region leading to the predisposition for dissection is MYH11, which encodes smooth muscle myosin heavy chain (SM-MHC). The effects of increased expression of MYH11 on smooth muscle cell (SMC) phenotypes were explored using mouse aortic SMCs with transgenic overexpression of one isoform of SM-MHC. We found that these cells show increased expression of Myh11 and myosin filament-associated contractile genes at the message level when compared with control SMCs, but not at the protein level due to increased protein degradation. Increased expression of Myh11 resulted in endoplasmic reticulum (ER) stress in SMCs, which led to a paradoxical decrease of protein levels through increased autophagic degradation. An additional consequence of ER stress in SMCs was increased intracellular calcium ion concentration, resulting in increased contractile signaling and contraction. The increased signals for contraction further promote transcription of contractile genes, leading to a feedback loop of metabolic abnormalities in these SMCs. We suggest that overexpression of MYH11 can lead to increased ER stress and autophagy, findings that may be globally implicated in disease processes associated with genomic duplications.
Asunto(s)
Autofagia , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Respuesta de Proteína Desplegada , Animales , Señalización del Calcio , Duplicación Cromosómica , Cromosomas Humanos Par 16/genética , Estrés del Retículo Endoplásmico , Expresión Génica , Humanos , Ratones , Contracción Muscular , Músculo Liso Vascular/fisiologíaRESUMEN
Mutations in ACTA2, encoding the smooth muscle cell (SMC)-specific isoform of α-actin (α-SMA), cause thoracic aortic aneurysms and dissections and occlusive vascular diseases, including early onset coronary artery disease and stroke. We have shown that occlusive arterial lesions in patients with heterozygous ACTA2 missense mutations show increased numbers of medial or neointimal SMCs. The contribution of SMC hyperplasia to these vascular diseases and the pathways responsible for linking disruption of α-SMA filaments to hyperplasia are unknown. Here, we show that the loss of Acta2 in mice recapitulates the SMC hyperplasia observed in ACTA2 mutant SMCs and determine the cellular pathways responsible for SMC hyperplasia. Acta2(-/-) mice showed increased neointimal formation following vascular injury in vivo, and SMCs explanted from these mice demonstrated increased proliferation and migration. Loss of α-SMA induced hyperplasia through focal adhesion (FA) rearrangement, FA kinase activation, re-localization of p53 from the nucleus to the cytoplasm and increased expression and ligand-independent activation of platelet-derived growth factor receptor beta (Pdgfr-ß). Disruption of α-SMA in wild-type SMCs also induced similar cellular changes. Imatinib mesylate inhibited Pdgfr-ß activation and Acta2(-/-) SMC proliferation in vitro and neointimal formation with vascular injury in vivo. Loss of α-SMA leads to SMC hyperplasia in vivo and in vitro through a mechanism involving FAK, p53 and Pdgfr-ß, supporting the hypothesis that SMC hyperplasia contributes to occlusive lesions in patients with ACTA2 missense mutations.
Asunto(s)
Actinas/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Actinas/genética , Animales , Movimiento Celular/genética , Núcleo Celular/metabolismo , Proliferación Celular , Activación Enzimática , Hiperplasia , Ratones , Ratones Noqueados , Modelos Biológicos , Fenotipo , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismoRESUMEN
RATIONALE: Mutations in myosin heavy chain (MYH11) cause autosomal dominant inheritance of thoracic aortic aneurysms and dissections. At the same time, rare, nonsynonymous variants in MYH11 that are predicted to disrupt protein function but do not cause inherited aortic disease are common in the general population and the vascular disease risk associated with these variants is unknown. OBJECTIVE: To determine the consequences of the recurrent MYH11 rare variant, R247C, through functional studies in vitro and analysis of a knock-in mouse model with this specific variant, including assessment of aortic contraction, response to vascular injury, and phenotype of primary aortic smooth muscle cells (SMCs). METHODS AND RESULTS: The steady state ATPase activity (actin-activated) and the rates of phosphate and ADP release were lower for the R247C mutant myosin than for the wild-type, as was the rate of actin filament sliding in an in vitro motility assay. Myh11(R247C/R247C) mice exhibited normal growth, reproduction, and aortic histology but decreased aortic contraction. In response to vascular injury, Myh11(R247C/R247C) mice showed significantly increased neointimal formation due to increased SMC proliferation when compared with the wild-type mice. Primary aortic SMCs explanted from the Myh11(R247C/R247C) mice were dedifferentiated compared with wild-type SMCs based on increased proliferation and reduced expression of SMC contractile proteins. The mutant SMCs also displayed altered focal adhesions and decreased Rho activation, associated with decreased nuclear localization of myocardin-related transcription factor-A. Exposure of the Myh11(R247C/R247C) SMCs to a Rho activator rescued the dedifferentiated phenotype of the SMCs. CONCLUSIONS: These results indicate that a rare variant in MYH11, R247C, alters myosin contractile function and SMC phenotype, leading to increased proliferation in vitro and in response to vascular injury.
Asunto(s)
Músculo Liso Vascular/metabolismo , Mutación , Miocitos del Músculo Liso/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Vasoconstricción , Adenosina Trifosfato/metabolismo , Animales , Aorta/metabolismo , Sitios de Unión , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/patología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Adhesiones Focales/metabolismo , Adhesiones Focales/patología , Técnicas de Sustitución del Gen , Genotipo , Cinética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Cadenas Pesadas de Miosina/genética , Fenotipo , Transactivadores/metabolismo , Transfección , Vasoconstricción/genética , Proteínas de Unión al GTP rho/metabolismoRESUMEN
OBJECTIVE: Although hypertension is the most common risk factor for thoracic aortic diseases, it is not understood how increased pressures on the ascending aorta lead to aortic aneurysms. We investigated the role of angiotensin II type 1 receptor activation in ascending aortic remodeling in response to increased biomechanical forces using a transverse aortic constriction (TAC) mouse model. APPROACH AND RESULTS: Two weeks after TAC, the increased biomechanical pressures led to ascending aortic dilatation and thickening of the medial and adventitial layers of the aorta. There was significant adventitial hyperplasia and inflammatory responses in TAC ascending aortas were accompanied by increased adventitial collagen, elevated inflammatory and proliferative markers, and increased cell density attributable to accumulation of myofibroblasts and macrophages. Treatment with losartan significantly blocked TAC-induced vascular inflammation and macrophage accumulation. However, losartan only partially prevented TAC-induced adventitial hyperplasia, collagen accumulation, and ascending aortic dilatation. Increased Tgfb2 expression and phosphorylated-Smad2 staining in the medial layer of TAC ascending aortas were effectively blocked with losartan. In contrast, the increased Tgfb1 expression and adventitial phospho-Smad2 staining were only partially attenuated by losartan. In addition, losartan significantly blocked extracellular signal-regulated kinase activation and reactive oxygen species production in the TAC ascending aorta. CONCLUSIONS: Inhibition of the angiotensin II type 1 receptor using losartan significantly attenuated the vascular remodeling associated with TAC but did not completely block the increased transforming growth factor-ß1 expression, adventitial Smad2 signaling, and collagen accumulation. These results help to delineate the aortic transforming growth factor-ß signaling that is dependent and independent of the angiotensin II type 1 receptor after TAC.
Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Antihipertensivos/farmacología , Aorta/efectos de los fármacos , Aneurisma de la Aorta Torácica/prevención & control , Hipertensión/tratamiento farmacológico , Losartán/farmacología , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Animales , Aorta/metabolismo , Aorta/patología , Aorta/fisiopatología , Aorta/cirugía , Aneurisma de la Aorta Torácica/etiología , Aneurisma de la Aorta Torácica/metabolismo , Aneurisma de la Aorta Torácica/patología , Aneurisma de la Aorta Torácica/fisiopatología , Presión Arterial , Fenómenos Biomecánicos , Colágeno/metabolismo , Constricción , Dilatación Patológica , Modelos Animales de Enfermedad , Ecocardiografía Doppler , Hipertensión/complicaciones , Hipertensión/metabolismo , Hipertensión/patología , Hipertensión/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor de Angiotensina Tipo 1/metabolismo , Proteína Smad2/metabolismo , Factores de Tiempo , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
Microcephalic osteodysplastic primordial dwarfism type II (MOPDII) is caused by biallelic loss-of-function variants in pericentrin (PCNT), and premature coronary artery disease (CAD) is a complication of the syndrome. Histopathology of coronary arteries from patients with MOPDII who died of CAD in their 20s showed extensive atherosclerosis. Hyperlipidemic mice with smooth muscle cell-specific (SMC-specific) Pcnt deficiency (PcntSMC-/-) exhibited significantly greater atherosclerotic plaque burden compared with similarly treated littermate controls despite similar serum lipid levels. Loss of PCNT in SMCs induced activation of heat shock factor 1 (HSF1) and consequently upregulated the expression and activity of HMG-CoA reductase (HMGCR), the rate-limiting enzyme in cholesterol biosynthesis. The increased cholesterol biosynthesis in PcntSMC-/- SMCs augmented PERK signaling and phenotypic modulation compared with control SMCs. Treatment with the HMGCR inhibitor, pravastatin, blocked the augmented SMC modulation and reduced plaque burden in hyperlipidemic PcntSMC-/- mice to that of control mice. These data support the notion that Pcnt deficiency activates cellular stress to increase SMC modulation and plaque burden, and targeting this pathway with statins in patients with MOPDII has the potential to reduce CAD in these individuals. The molecular mechanism uncovered further emphasizes SMC cytosolic stress and HSF1 activation as a pathway driving atherosclerotic plaque formation independently of cholesterol levels.
Asunto(s)
Aterosclerosis , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Placa Aterosclerótica , Animales , Humanos , Ratones , Aterosclerosis/patología , Colesterol/metabolismo , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica/patologíaRESUMEN
Missense variants throughout ACTA2, encoding smooth muscle α-actin (αSMA), predispose to adult onset thoracic aortic disease, but variants disrupting arginine 179 (R179) lead to Smooth Muscle Dysfunction Syndrome (SMDS) characterized by childhood-onset diverse vascular diseases. Our data indicate that αSMA localizes to the nucleus in wildtype (WT) smooth muscle cells (SMCs), enriches in the nucleus with SMC differentiation, and associates with chromatin remodeling complexes and SMC contractile gene promotors, and the ACTA2 p.R179 variant decreases nuclear localization of αSMA. SMCs explanted from a SMC-specific conditional knockin mouse model, Acta2SMC-R179/+, are less differentiated than WT SMCs, both in vitro and in vivo, and have global changes in chromatin accessibility. Induced pluripotent stem cells from patients with ACTA2 p.R179 variants fail to fully differentiate from neural crest cells to SMCs, and single cell transcriptomic analyses of an ACTA2 p.R179H patient's aortic tissue shows increased SMC plasticity. Thus, nuclear αSMA participates in SMC differentiation and loss of this nuclear activity occurs with ACTA2 p.R179 pathogenic variants.