Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Wiley Interdiscip Rev Cogn Sci ; 14(1): e1610, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35642475

RESUMEN

Attention prioritizes certain information at the expense of other information in ways that are similar across vision, audition, and other sensory modalities. It influences how-and even what-information is represented and processed, affecting brain activity at every level. Much of the core research into cognitive and neural mechanisms of attention has used visual tasks. However, the same top-down, object-based, and bottom-up attentional processes shape auditory perception, largely through the same underlying, cognitive networks. This article is categorized under: Psychology > Attention.


Asunto(s)
Percepción Auditiva , Imagen por Resonancia Magnética , Humanos , Percepción Visual , Estimulación Luminosa
2.
Front Hum Neurosci ; 14: 91, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265675

RESUMEN

Spatial selective attention greatly affects our processing of complex visual scenes, yet the way in which the brain selects relevant objects while suppressing irrelevant objects is still unclear. Evidence of these processes has been found using non-invasive electroencephalography (EEG). However, few studies have characterized these measures during attention to dynamic stimuli, and little is known regarding how these measures change with increased scene complexity. Here, we compared attentional modulation of the EEG N1 and alpha power (oscillations between 8-14 Hz) across three visual selective attention tasks. The tasks differed in the number of irrelevant stimuli presented, but all required sustained attention to the orientation trajectory of a lateralized stimulus. In scenes with few irrelevant stimuli, top-down control of spatial attention is associated with strong modulation of both the N1 and alpha power across parietal-occipital channels. In scenes with many irrelevant stimuli in both hemifields, however, top-down control is no longer represented by strong modulation of alpha power, and N1 amplitudes are overall weaker. These results suggest that as a scene becomes more complex, requiring suppression in both hemifields, the neural signatures of top-down control degrade, likely reflecting some limitation in EEG to represent this suppression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA