Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Control Release ; 372: 648-660, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936743

RESUMEN

In vitro-In vivo correlation (IVIVC) is a main focus of the pharmaceutical industry, academia and the regulatory sectors, as this is an effective modelling tool to predict drug product in vivo performance based on in vitro release data and serve as a surrogate for bioequivalence studies, significantly reducing the need for clinical studies. Till now, IVIVCs have not been successfully developed for in situ forming implants due to the significantly different in vitro and in vivo drug release profiles that are typically achieved for these dosage forms. This is not unexpected considering the unique complexity of the drug release mechanisms of these products. Using risperidone in situ forming implants as a model, the current work focuses on: 1) identification of critical attributes of in vitro release testing methods that may contribute to differences in in vitro and in vivo drug release from in situ forming implants; and 2) optimization of the in vitro release method, with the aim of developing Level A IVIVCs for risperidone implants. Dissolution methods based on a novel Teflon shape controlling adapter along with a water non-dissolvable glass fiber membrane (GF/F) instead of a water dissolvable PVA film (named as GF/F-Teflon adapter and PVA-Teflon adapter, respectively), and an in-house fabricated Glass slide adapter were used to investigate the impact of: the surface-to-volume ratio, water uptake ratio, phase separation rate (measured by NMP release in 24 h post injection in vitro or in vivo), and mechanical pressure on the drug release patterns. The surface-to-volume ratio and water uptake were shown to be more critical in vitro release testing method attributes compared to the phase separation rate and mechanical pressure. The Glass slide adapter-based dissolution method, which allowed for the formation of depots with bio-mimicking surface-to-volume ratios and sufficient water uptake, has the ability to generate bio-relevant degradation profiles as well as in vitro release profiles for risperidone implants. For the first time, a Level A IVIVC (rabbit model) has been successfully developed for in situ forming implants. Release data for implant formulations with slightly different PLGA molecular weights (MWs) were used to develop the IVIVC. The predictability of the model passed external validation using the reference listed drug (RLD), Perseris®. IVIVC could not be developed when formulations with different PLGA molar ratios of lactic acid to glycolic acid (L/G) were included. The present work provides a comprehensive understanding of the impact of the testing method attributes on drug release from in situ forming implants, which is a valuable practice for level A IVIVC development.


Asunto(s)
Implantes de Medicamentos , Liberación de Fármacos , Risperidona , Risperidona/administración & dosificación , Risperidona/farmacocinética , Risperidona/química , Antipsicóticos/administración & dosificación , Antipsicóticos/farmacocinética , Antipsicóticos/química , Animales , Solubilidad
2.
J Control Release ; 361: 777-791, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37591464

RESUMEN

Despite the unique advantages of injectable, long-acting in situ forming implant formulations based on poly(lactide-co-glycolide) (PLGA) and N-Methyl-2-Pyrrolidone (NMP), only six products are commercially available. A better understanding of PLGA will aid in the development of more in situ forming implant innovator and generic products. This article investigates the impact of slight changes in PLGA attributes, i.e., molecular weight (MW), lactide:glycolide (L/G) ratio, blockiness, and end group, on the in vitro and in vivo performance of PLGA-based in situ forming implant formulations. Perseris (risperidone) for extended-release injectable suspension was selected as the reference listed drug (RLD). A previously developed adapter-based USP 2 method was used for the in vitro release testing of various risperidone implant formulations. A rabbit model was used to determine the in vivo pharmacokinetic profiles of the formulations (subcutaneous administration) and deconvolution (Loo-Riegelman method) was conducted to obtain the in vivo release profiles. The results showed that a 5 KDa difference in the MW (19.2, 24.2, 29.2 KDa), a 5% variation in the L/G ratio (85/15, 80/20, 75/25) and the end-cap (acid vs ester) all significantly impacted the formulation behavior both in vitro and in vivo. Higher MW, higher L/G ratio and ester end-cap PLGA all resulted in longer release durations. The formulations prepared with polymers with different blockiness values (within the blockiness range tested) did not show differences in in vitro and in vivo release. An in vitro-in vivo correlation (IVIVC) was not developed due to the different in vitro and in vivo phase separation rates, swelling tendencies and consequent significantly different release profiles. This is the first report evaluating the impact of PLGA property variation (over a narrow range) on the performance of in situ forming implants. The knowledge gained will provide a better understanding of the mechanisms underlying risperidone in situ forming implant performance and will aid the development of future products.


Asunto(s)
Ésteres , Risperidona , Animales , Conejos , Peso Molecular , Oligonucleótidos , Polímeros
3.
Protist ; 170(1): 52-63, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30576875

RESUMEN

Volvox carteri is an excellent model for investigating the evolution of multicellularity and cell differentiation, and the rate of future progress with this system will depend on improved molecular genetic tools. Several selectable markers for nuclear transformation of V. carteri have been developed, including the nitrate reductase (nitA) gene, but it would be useful to have additional markers to multiplex transgenes in this species. To further facilitate molecular genetic analyses of V. carteri, we developed two new selectable markers that provide rapid, easily selected, and stable resistance to the antibiotics hygromycin and blasticidin. We generated constructs with Volvox-specific regulatory sequences and codon-optimized hygromycin (VcHyg) and blasticidin (VcBlast) resistance genes from Coccidioides posadasii and Bacillus cereus, respectively. With these constructs, transformants were obtained via biolistic bombardment at rates of 0.5-13 per million target cells bombarded. Antibiotic-resistant survivors were readily isolated 7days post bombardment. VcHyg and VcBlast transgenes and transcripts were detected in transformants. Co-transformation rates using the VcHyg or VcBlast markers with unselected genes were comparable to those obtained with nitA. These results indicate that the pVcHyg and pVcBlast plasmids are highly efficient and convenient for transforming and co-transforming a broad range of V. carteri strains.


Asunto(s)
Antibacterianos/farmacología , Cinamatos/farmacología , Farmacorresistencia Microbiana/genética , Higromicina B/análogos & derivados , Transformación Genética/genética , Volvox/genética , Bacillus cereus/genética , Coccidioides/genética , Genes Bacterianos/genética , Genes Fúngicos/genética , Marcadores Genéticos/genética , Higromicina B/farmacología , Microorganismos Modificados Genéticamente/genética , Nucleósidos/farmacología , Transformación Genética/efectos de los fármacos , Volvox/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA