Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(11): 8076-8081, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28265622

RESUMEN

Using density functional theory, we investigate the adsorption properties of acetylsalicylic acid (aspirin) on the outer surfaces of a (10,0) carbon nanotube (CNT) and a (8,0) triazine-based graphitic carbon nitride nanotube (CNNT). The adsorption energies for the CNNT and CNT are 0.67 and 0.51 eV, respectively, and hence, the aspirin molecule binds more strongly to the CNNT. The stronger adsorption energy for the binding to the CNNT is ascribed to the high reactivity of its nitrogen atoms with high electron affinity. The CNNT exhibits local electric dipole moments that cause strong charge redistribution in the adsorbed aspirin molecule. The influence of an external electric field on the adsorption of aspirin on the nanotubes is explored by examining modifications in their electronic band structures, partial densities of states, and charge distributions. An electric field applied along a particular direction is found to induce molecular states of aspirin that lie within the in-gap region of the CNNT. This implies that the CNNT can be potentially utilized for the detection of aspirin.


Asunto(s)
Aspirina/química , Nanotubos de Carbono/química , Nitrilos/química , Adsorción , Teoría Cuántica , Triazinas/química
2.
Opt Express ; 22 Suppl 4: A1040-50, 2014 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24978067

RESUMEN

Pristine graphene and a graphene interlayer inserted between indium tin oxide (ITO) and p-GaN have been analyzed and compared with ITO, which is a typical current spreading layer in lateral GaN LEDs. Beyond a certain current injection, the pristine graphene current spreading layer (CSL) malfunctioned due to Joule heat that originated from the high sheet resistance and low work function of the CSL. However, by combining the graphene and the ITO to improve the sheet resistance, it was found to be possible to solve the malfunctioning phenomenon. Moreover, the light output power of an LED with a graphene interlayer was stronger than that of an LED using ITO or graphene CSL. We were able to identify that the improvement originated from the enhanced current spreading by inspecting the contact and conducting the simulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA