Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 31(18): 29589-29595, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37710755

RESUMEN

We report a microlens array camera with variable apertures (MACVA) for high dynamic range (HDR) imaging by using microlens arrays with various sizes of apertures. The MACVA comprises variable apertures, microlens arrays, gap spacers, and a CMOS image sensor. The microlenses with variable apertures capture low dynamic range (LDR) images with different f-stops under single-shot exposure. The reconstructed HDR images clearly exhibit expanded dynamic ranges surpassing LDR images as well as high resolution without motion artifacts, comparable to the maximum MTF50 value observed among the LDR images. This compact camera provides, what we believe to be, a new perspective for various machine vision or mobile devices applications.

2.
APL Bioeng ; 7(3): 036110, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37649619

RESUMEN

3D in vivo imaging techniques facilitate disease tracking and treatment, but bulky configurations and motion artifacts limit practical clinical applications. Compact light-field cameras with microlens arrays offer a feasible option for rapid volumetric imaging, yet their utilization in clinical practice necessitates an increased depth-of-field for handheld operation. Here, we report deep focus light-field camera (DF-LFC) with crosstalk-free solid immersion microlens arrays (siMLAs), allowing large depth-of-field and high-resolution imaging for handheld 3D intraoral scanning. The siMLAs consist of thin PDMS-coated microlens arrays and a metal-insulator-metal absorber to extend the focal length with low optical crosstalk and specular reflection. The experimental results show that the immersion of MLAs in PDMS increases the focal length by a factor of 2.7 and the transmittance by 5.6%-27%. Unlike conventional MLAs, the siMLAs exhibit exceptionally high f-numbers up to f/6, resulting in a large depth-of-field for light-field imaging. The siMLAs were fully integrated into an intraoral scanner to reconstruct a 3D dental phantom with a distance measurement error of 82 ± 41 µm during handheld operation. The DF-LFC offers a new direction not only for digital dental impressions with high accuracy, simplified workflow, reduced waste, and digital compatibility but also for assorted clinical endoscopy and microscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA