Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Gen Virol ; 92(Pt 4): 974-87, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21169213

RESUMEN

Cassava brown streak disease (CBSD) has occurred in the Indian Ocean coastal lowlands and some areas of Malawi in East Africa for decades, and makes the storage roots of cassava unsuitable for consumption. CBSD is associated with Cassava brown streak virus (CBSV) and the recently described Ugandan cassava brown streak virus (UCBSV) [picorna-like (+)ssRNA viruses; genus Ipomovirus; family Potyviridae]. This study reports the first comprehensive analysis on how evolution is shaping the populations of CBSV and UCBSV. The complete genomes of CBSV and UCBSV (four and eight isolates, respectively) were 69.0-70.3 and 73.6-74.4% identical at the nucleotide and polyprotein amino acid sequence levels, respectively. They contained predictable sites of homologous recombination, mostly in the 3'-proximal part (NIb-HAM1h-CP-3'-UTR) of the genome, but no evidence of recombination between the two viruses was found. The CP-encoding sequences of 22 and 45 isolates of CBSV and UCBSV analysed, respectively, were mainly under purifying selection; however, several sites in the central part of CBSV CP were subjected to positive selection. HAM1h (putative nucleoside triphosphate pyrophosphatase) was the least similar protein between CBSV and UCBSV (aa identity approx. 55%). Both termini of HAM1h contained sites under positive selection in UCBSV. The data imply an on-going but somewhat different evolution of CBSV and UCBSV, which is congruent with the recent widespread outbreak of UCBSV in cassava crops in the highland areas (>1000 m above sea level) of East Africa where CBSD has not caused significant problems in the past.


Asunto(s)
Evolución Molecular , Manihot/virología , Filogenia , Enfermedades de las Plantas/virología , Potyviridae/clasificación , Potyviridae/aislamiento & purificación , África , Análisis por Conglomerados , Genoma Viral , India , Datos de Secuencia Molecular , Potyviridae/genética , ARN Viral/genética , Recombinación Genética , Selección Genética , Análisis de Secuencia de ADN , Homología de Secuencia
2.
Commun Agric Appl Biol Sci ; 75(3): 273-8, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21539245

RESUMEN

The banana weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) is a serious constraint to banana (Musa spp.) production throughout the world. The entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) offers a potential weevil management option, but conventional delivery mechanisms have limited its success. As an endophyte, however, B. bassiana can be efficiently delivered to banana planting materials for the potential management of C. sordidus. However, entomopathogens can change morphology and efficacy against their target host when successively sub-cultured on artificial media or when exposed to certain physical and chemical environmental conditions. Whether such changes occur in B. bassiana after an endophytic phase inside a banana plant remains unknown. The primary aim of our study was to evaluate the viability, growth, sporulation and pathogenicity of endophytic B. bassiana. To attain this, two sets of experiments, namely morphological characterization and larval bioassays, were conducted under laboratory conditions. In these experiments, growth and pathogenicity of the wild-type B. bassiana strain G41, obtained originally from banana farms, was compared with the endophytic B. bassiana strain G41, re-isolated from the rhizome of B. bassiana-inoculated banana plants at one month post-inoculation. Morphological characterization, conidial germination, colony growth and sporulation rate was assessed on SDAY media while pathogenicity was determined 15 days after immersing the larvae of C. sordidus in different conidial doses. No differences were observed in colony appearance and growth rate between the endophytic and wild-type strain. Percentage conidial germination for the endophytic strain (91.4-94.0%) was higher than for the wild-type (86.6-89.7%). LD50 equated 1.76 x 10(5) and 0.71 x 10(5) conidia/ml for the wild-type and endophytic B. bassiana strains, respectively, but did not differ between strains. Our study demonstrated that, after an endophytic phase inside the banana plant, B. bassiana retains it morphology and pathogenicity against the banana weevil larvae; and thus can offer protection against the damaging larvae feeding inside the rhizome.


Asunto(s)
Beauveria/fisiología , Escarabajos/microbiología , Animales , Bioensayo , Interacciones Huésped-Patógeno , Larva/microbiología , Control Biológico de Vectores
3.
Genes (Basel) ; 11(6)2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599710

RESUMEN

Several species of herbivores feed on maize in field and storage setups, making the development of multiple insect resistance a critical breeding target. In this study, an association mapping panel of 341 tropical maize lines was evaluated in three field environments for resistance to fall armyworm (FAW), whilst bulked grains were subjected to a maize weevil (MW) bioassay and genotyped with Diversity Array Technology's single nucleotide polymorphisms (SNPs) markers. A multi-locus genome-wide association study (GWAS) revealed 62 quantitative trait nucleotides (QTNs) associated with FAW and MW resistance traits on all 10 maize chromosomes, of which, 47 and 31 were discovered at stringent Bonferroni genome-wide significance levels of 0.05 and 0.01, respectively, and located within or close to multiple insect resistance genomic regions (MIRGRs) concerning FAW, SB, and MW. Sixteen QTNs influenced multiple traits, of which, six were associated with resistance to both FAW and MW, suggesting a pleiotropic genetic control. Functional prioritization of candidate genes (CGs) located within 10-30 kb of the QTNs revealed 64 putative GWAS-based CGs (GbCGs) showing evidence of involvement in plant defense mechanisms. Only one GbCG was associated with each of the five of the six combined resistance QTNs, thus reinforcing the pleiotropy hypothesis. In addition, through in silico co-functional network inferences, an additional 107 network-based CGs (NbCGs), biologically connected to the 64 GbCGs, and differentially expressed under biotic or abiotic stress, were revealed within MIRGRs. The provided multiple insect resistance physical map should contribute to the development of combined insect resistance in maize.


Asunto(s)
Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo/genética , Zea mays/genética , Animales , Mapeo Cromosómico , Genómica , Genotipo , Control de Plagas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Polimorfismo de Nucleótido Simple/genética , Gorgojos/genética , Gorgojos/patogenicidad , Zea mays/crecimiento & desarrollo , Zea mays/parasitología
4.
Arch Virol ; 154(2): 353-9, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19184340

RESUMEN

Six isolates of Cassava brown streak virus (CBSV, genus Ipomovirus; Potyviridae) from the Lake Victoria basin in Uganda and Tanzania were characterized. Virus particles were 650 nm long. The complete coat protein (CP)-encoding sequences (1,101 nucleotides, nt) were 90.7-99.5 and 93.7-99.5% identical at the nt and amino acid (aa) levels, respectively. The 3' untranslated region was 225, 226 or 227 nt long. These eight isolates were only 75.8-77.5% (nt) and 87.0-89.9% (aa) identical when compared to the partial CP sequences (714 nt) of six CBSV isolates characterized previously from the costal lowlands of Tanzania and Mozambique. Hence, two genetically different and geographically separated populations of CSBV exist in East Africa.


Asunto(s)
Manihot/virología , Enfermedades de las Plantas/virología , Potyviridae/clasificación , Potyviridae/genética , Regiones no Traducidas 3'/genética , Proteínas de la Cápside/genética , Agua Dulce , Océano Índico , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia , Tanzanía , Uganda
5.
J Virol Methods ; 171(2): 394-400, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20923689

RESUMEN

The expanding cassava brown streak disease (CBSD) epidemic in East Africa is caused by two ipomoviruses (genus Ipomovirus; Potyviridae), namely, Cassava brown streak virus (CBSV), and Ugandan cassava brown streak virus (UCBSV) that was described recently. A reverse transcription polymerase chain reaction (RT-PCR) based diagnostic method was developed in this study for simultaneous virus-specific detection of the two viruses. Results showed that CBSV and UCBSV are distributed widely in the highlands (> 1000 m above the sea level) of the Lake Victoria zone in Uganda and Tanzania and also in the Indian Ocean costal lowlands of Tanzania. Isolates of UCBSV from the Lake Victoria zone were placed to two phylogenetic clusters in accordance with their origin in Uganda or Tanzania, respectively. Mixed infections with CBSV and UCBSV were detected in many cassava plants in the areas surveyed. CBSV was also detected in the perennial species Manihot glaziovii (DNA-barcoded in this study) in Tanzania, which revealed the first virus reservoir other than cassava. The method for detection of CBSV and UCBSV described in this study has important applications for plant quarantine, resistance breeding of cassava, and studies on epidemiology and control of CBSD in East Africa.


Asunto(s)
Manihot/virología , Enfermedades de las Plantas/virología , Potyviridae/clasificación , Potyviridae/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Virología/métodos , África Oriental , Análisis por Conglomerados , Datos de Secuencia Molecular , Filogenia , Potyviridae/genética , ARN Viral/genética , Análisis de Secuencia de ADN , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA