Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain ; 140(1): 184-200, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27818384

RESUMEN

Alzheimer's disease is characterized by the combined presence of amyloid plaques and tau pathology, the latter being correlated with the progression of clinical symptoms. Neuroinflammatory changes are thought to be major contributors to Alzheimer's disease pathophysiology, even if their precise role still remains largely debated. Notably, to what extent immune responses contribute to cognitive impairments promoted by tau pathology remains poorly understood. To address this question, we took advantage of the THY-Tau22 mouse model that progressively develops hippocampal tau pathology paralleling cognitive deficits and reappraised the interrelationship between tau pathology and brain immune responses. In addition to conventional astroglial and microglial responses, we identified a CD8-positive T cell infiltration in the hippocampus of tau transgenic mice associated with an early chemokine response, notably involving CCL3. Interestingly, CD8-positive lymphocyte infiltration was also observed in the cortex of patients exhibiting frontemporal dementia with P301L tau mutation. To gain insights into the functional involvement of T cell infiltration in the pathophysiological development of tauopathy in THY-Tau22 mice, we chronically depleted T cells using anti-CD3 antibody. Such anti-CD3 treatment prevented hippocampal T cell infiltration in tau transgenic animals and reverted spatial memory deficits, in absence of tau pathology modulation. Altogether, these data support an instrumental role of hippocampal T cell infiltration in tau-driven pathophysiology and cognitive impairments in Alzheimer's disease and other tauopathies.


Asunto(s)
Anticuerpos/uso terapéutico , Complejo CD3/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Corteza Cerebral/inmunología , Quimiocinas/inmunología , Disfunción Cognitiva/inmunología , Hipocampo/inmunología , Inflamación/inmunología , Tauopatías/inmunología , Anciano , Animales , Disfunción Cognitiva/terapia , Modelos Animales de Enfermedad , Humanos , Inflamación/terapia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Tauopatías/terapia
2.
Mediators Inflamm ; 2017: 2470950, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29343884

RESUMEN

Neutral sphingomyelinase is known to be implicated in growth arrest, differentiation, proliferation, and apoptosis. Although previous studies have reported the involvement of neutral sphingomyelinase in hippocampus physiopathology, its behavior in the hippocampus during Parkinson's disease remains undetected. In this study, we show an upregulation of inducible nitric oxide synthase and a downregulation of neutral sphingomyelinase in the hippocampus of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- (MPTP-) induced mouse model of Parkinson's disease. Moreover, the stimulation of neutral sphingomyelinase activity with vitamin 1,25-dihydroxyvitamin D3 reduces specifically saturated fatty acid sphingomyelin by making sphingomyelin a less rigid molecule that might influence neurite plasticity. The possible biological relevance of the increase of neutral sphingomyelinase in Parkinson's disease is discussed.


Asunto(s)
Hipocampo/enzimología , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/enzimología , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Calcitriol/farmacología , Línea Celular , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/patología , Mediadores de Inflamación/metabolismo , Intoxicación por MPTP/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/metabolismo , Enfermedad de Parkinson Secundaria/patología , Esfingomielinas/metabolismo
3.
Mediators Inflamm ; 2016: 3937057, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27194825

RESUMEN

Today a large number of studies are focused on clarifying the complexity and diversity of the pathogenetic mechanisms inducing Parkinson disease. We used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin that induces Parkinson disease, to evaluate the change of midbrain structure and the behavior of the anti-inflammatory factor e-cadherin, interleukin-6, tyrosine hydroxylase, phosphatase and tensin homolog, and caveolin-1. The results showed a strong expression of e-cadherin, variation of length and thickness of the heavy neurofilaments, increase of interleukin-6, and reduction of tyrosine hydroxylase known to be expression of dopamine cell loss, reduction of phosphatase and tensin homolog described to impair responses to dopamine, and reduction of caveolin-1 known to be expression of epithelial-mesenchymal transition and fibrosis. The possibility that the overexpression of the e-cadherin might be implicated in the anti-inflammatory reaction to MPTP treatment by influencing the behavior of the other analyzed molecules is discussed.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Cadherinas/metabolismo , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Animales , Interleucina-6/metabolismo , Masculino , Ratones Endogámicos C57BL , Tirosina 3-Monooxigenasa/metabolismo
4.
Neurobiol Aging ; 58: 201-212, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28753475

RESUMEN

Mutations or upregulation in presenilin 1 (PS1) gene are found in familial early-onset Alzheimer's disease or sporadic late-onset Alzheimer's disease, respectively. PS1 has been essentially studied in neurons and its mutation was shown to alter intracellular calcium (Ca2+) signals. Here, we showed that PS1 is expressed in smooth muscle cells (SMCs) of mouse cerebral arteries, and we assessed the effects of the deletion of exon 9 of PS1 (PS1dE9) on Ca2+ signals and contractile responses of vascular SMC. Agonist-induced contraction of cerebral vessels was significantly decreased in PS1dE9 both in vivo and ex vivo. Spontaneous activity of Ca2+ sparks through ryanodine-sensitive channels (RyR) was unchanged, whereas the RyR-mediated Ca2+-release activated by caffeine was shorter in PS1dE9 SMC when compared with control. Moreover, PS1dE9 mutation decreased the caffeine-activated capacitive Ca2+ entry, and inhibitors of SERCA pumps reversed the effects of PS1dE9 on Ca2+ signals. PS1dE9 mutation also leads to the increased expression of SERCA3, phospholamban, and RyR3. These results show that PS1 plays a crucial role in the cerebrovascular system and the vascular reactivity is decreased through altered Ca2+ signals in PS1dE9 mutant mice.


Asunto(s)
Calcio/metabolismo , Arterias Cerebrales/metabolismo , Contracción Muscular/genética , Mutación , Presenilina-1/genética , Enfermedad de Alzheimer/genética , Animales , Cafeína/farmacología , Señalización del Calcio/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Arterias Cerebrales/fisiología , Expresión Génica/genética , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
5.
Cell Calcium ; 58(5): 467-75, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26254047

RESUMEN

TRPP2 is a cationic channel expressed in plasma membrane and in sarcoplasmic reticulum. In several cell lines, TRPP2 is described as a reticulum Ca(2+) leak channel but it also interacts with ryanodine and inositol 1,4,5-trisphosphate (InsP3) receptors to inhibit and increase the release of Ca(2+) stores, respectively. TRPP2 is known to be expressed in vascular smooth muscle cells, however its function in Ca(2+) signals remains poorly described in native cells, principally because the pharmacology is not developed. TRPP2 was expressed in cerebral arteries. Triptolide evoked Ca(2+) responses in a Ca(2+)-free solution as well as permeabilized arteries. This Ca(2+) signal was inhibited in presence of antisense oligonucleotide and siRNA directed against TRPP2 and antibody directed against the first loop of TRPP2. The partial inhibition of TRPP2 expression increased both the caffeine-evoked Ca(2+) responses and in vivo contraction. It also decreased the InsP3-evoked Ca(2+) responses. Finally, aging affected the regulations in which TRPP2 is engaged, whereas the triptolide-evoked Ca(2+) response was not modified. Taken together, our results have shown that TRPP2 is implicated in triptolide-induced Ca(2+) release from intracellular Ca(2+) stores. TRPP2 functionally interacts with both ryanodine and InsP3 receptors. These interactions were not similar in adult and old mice.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Arterias Cerebrales/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canales Catiónicos TRPP/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA