Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Biol Sci ; 288(1965): 20212384, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34933599

RESUMEN

Understanding the resilience of temperate reefs to climate change requires exploring the recovery capacity of their habitat-forming species from recurrent marine heatwaves (MHWs). Here, we show that, in a Mediterranean highly enforced marine protected area established more than 40 years ago, habitat-forming octocoral populations that were first affected by a severe MHW in 2003 have not recovered after 15 years. Contrarily, they have followed collapse trajectories that have brought them to the brink of local ecological extinction. Since 2003, impacted populations of the red gorgonian Paramuricea clavata (Risso, 1826) and the red coral Corallium rubrum (Linnaeus, 1758) have followed different trends in terms of size structure, but a similar progressive reduction in density and biomass. Concurrently, recurrent MHWs were observed in the area during the 2003-2018 study period, which may have hindered populations recovery. The studied octocorals play a unique habitat-forming role in the coralligenous assemblages (i.e. reefs endemic to the Mediterranean Sea home to approximately 10% of its species). Therefore, our results underpin the great risk that recurrent MHWs pose for the long-term integrity and functioning of these emblematic temperate reefs.


Asunto(s)
Antozoos , Ecosistema , Animales , Cambio Climático , Arrecifes de Coral , Estudios Longitudinales , Mar Mediterráneo
2.
Environ Microbiol ; 14(5): 1224-39, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22335606

RESUMEN

Most marine sponges establish a persistent association with a wide array of phylogenetically and physiologically diverse microbes. To date, the role of these symbiotic microbial communities in the metabolism and nutrient cycles of the sponge-microbe consortium remains largely unknown. We identified and quantified the microbial communities associated with three common Mediterranean sponge species, Dysidea avara, Agelas oroides and Chondrosia reniformis (Demospongiae) that cohabitate coralligenous community. For each sponge we quantified the uptake and release of dissolved organic carbon (DOC) and nitrogen (DON), inorganic nitrogen and phosphate. Low microbial abundance and no evidence for DOC uptake or nitrification were found for D. avara. In contrast A. oroides and C. reniformis showed high microbial abundance (30% and 70% of their tissue occupied by microbes respectively) and both species exhibited high nitrification and high DOC and NH(4) (+) uptake. Surprisingly, these unique metabolic pathways were mediated in each sponge species by a different, and host specific, microbial community. The functional convergence of microbial consortia found in these two sympatric sponge species, suggest that these metabolic processes may be of special relevance to the success of the holobiont.


Asunto(s)
Bacterias/clasificación , Fenómenos Fisiológicos Bacterianos , Consorcios Microbianos/fisiología , Filogenia , Poríferos/microbiología , Animales , Bacterias/genética , Bacterias/metabolismo , Carbono/metabolismo , Mar Mediterráneo , Datos de Secuencia Molecular , Nitrógeno/metabolismo , ARN Ribosómico 16S/genética , Simbiosis
3.
Sci Rep ; 12(1): 21064, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36473926

RESUMEN

Understanding the factors and processes that shape intra-specific sensitivity to heat stress is fundamental to better predicting the vulnerability of benthic species to climate change. Here, we investigate the response of a habitat-forming Mediterranean octocoral, the red gorgonian Paramuricea clavata (Risso, 1826) to thermal stress at multiple biological and geographical scales. Samples from eleven P. clavata populations inhabiting four localities separated by hundreds to more than 1500 km of coast and with contrasting thermal histories were exposed to a critical temperature threshold (25 °C) in a common garden experiment in aquaria. Ten of the 11 populations lacked thermotolerance to the experimental conditions provided (25 days at 25 °C), with 100% or almost 100% colony mortality by the end of the experiment. Furthermore, we found no significant association between local average thermal regimes nor recent thermal history (i.e., local water temperatures in the 3 months prior to the experiment) and population thermotolerance. Overall, our results suggest that local adaptation and/or acclimation to warmer conditions have a limited role in the response of P. clavata to thermal stress. The study also confirms the sensitivity of this species to warm temperatures across its distributional range and questions its adaptive capacity under ocean warming conditions. However, important inter-individual variation in thermotolerance was found within populations, particularly those exposed to the most severe prior marine heatwaves. These observations suggest that P. clavata could harbor adaptive potential to future warming acting on standing genetic variation (i.e., divergent selection) and/or environmentally-induced phenotypic variation (i.e., intra- and/or intergenerational plasticity).


Asunto(s)
Respuesta al Choque Térmico
4.
Sci Rep ; 7(1): 5069, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28698582

RESUMEN

The differential response of marine populations to climate change remains poorly understood. Here, we combine common garden thermotolerance experiments in aquaria and population genetics to disentangle the factors driving the population response to thermal stress in a temperate habitat-forming species: the octocoral Paramuricea clavata. Using eight populations separated from tens of meters to hundreds of kilometers, which were differentially impacted by recent mortality events, we identify 25 °C as a critical thermal threshold. After one week of exposure at this temperature, seven of the eight populations were affected by tissue necrosis and after 30 days of exposure at this temperature, the mean % of affected colonies increased gradually from 3 to 97%. We then demonstrate the weak relation between the observed differential phenotypic responses and the local temperature regimes experienced by each population. A significant correlation was observed between these responses and the extent of genetic drift impacting each population. Local adaptation may thus be hindered by genetic drift, which seems to be the main driver of the differential response. Accordingly, conservation measures should promote connectivity and control density erosion in order to limit the impact of genetic drift on marine populations facing climate change.


Asunto(s)
Antozoos/fisiología , Cambio Climático , Ecosistema , Adaptación Fisiológica , Animales , Geografía , Especificidad de la Especie , Estrés Fisiológico , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA