Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Retrovirology ; 15(1): 38, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29769087

RESUMEN

BACKGROUND: Hosts are able to restrict viral replication to contain virus spread before adaptive immunity is fully initiated. Many viruses have acquired genes directly counteracting intrinsic restriction mechanisms. This phenomenon has led to a co-evolutionary signature for both the virus and host which often provides a barrier against interspecies transmission events. Through different mechanisms of action, but with similar consequences, spumaviral feline foamy virus (FFV) Bet and lentiviral feline immunodeficiency virus (FIV) Vif counteract feline APOBEC3 (feA3) restriction factors that lead to hypermutation and degradation of retroviral DNA genomes. Here we examine the capacity of vif to substitute for bet function in a chimeric FFV to assess the transferability of anti-feA3 factors to allow viral replication. RESULTS: We show that vif can replace bet to yield replication-competent chimeric foamy viruses. An in vitro selection screen revealed that an engineered Bet-Vif fusion protein yields suboptimal protection against feA3. After multiple passages through feA3-expressing cells, however, variants with optimized replication competence emerged. In these variants, Vif was expressed independently from an N-terminal Bet moiety and was stably maintained. Experimental infection of immunocompetent domestic cats with one of the functional chimeras resulted in seroconversion against the FFV backbone and the heterologous FIV Vif protein, but virus could not be detected unambiguously by PCR. Inoculation with chimeric virus followed by wild-type FFV revealed that repeated administration of FVs allowed superinfections with enhanced antiviral antibody production and detection of low level viral genomes, indicating that chimeric virus did not induce protective immunity against wild-type FFV. CONCLUSIONS: Unrelated viral antagonists of feA3 cellular restriction factors can be exchanged in FFV, resulting in replication competence in vitro that was attenuated in vivo. Bet therefore may have additional functions other than A3 antagonism that are essential for successful in vivo replication. Immune reactivity was mounted against the heterologous Vif protein. We conclude that Vif-expressing FV vaccine vectors may be an attractive tool to prevent or modulate lentivirus infections with the potential option to induce immunity against additional lentivirus antigens.


Asunto(s)
Productos del Gen vif/genética , Virus de la Inmunodeficiencia Felina/genética , Proteínas de los Retroviridae/genética , Spumavirus/genética , Vacunas Virales/genética , Replicación Viral , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Gatos , Línea Celular , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Orden Génico , Productos del Gen gag/metabolismo , Genoma Viral , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Virus de la Inmunodeficiencia Felina/inmunología , Recombinación Genética , Infecciones por Retroviridae/genética , Infecciones por Retroviridae/metabolismo , Infecciones por Retroviridae/virología , Spumavirus/inmunología , Carga Viral , Vacunas Virales/inmunología
2.
Virus Genes ; 54(4): 550-560, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29855776

RESUMEN

Foamy viruses are unconventional and complex retroviruses distinct from the other members of the Retroviridae family. Currently, no disease has been firmly linked to persistent foamy virus infection of their cognate host including simians, bovines, felines, and equines or upon zoonotic transmission of different simian foamy viruses to humans. Bovine and simian foamy viruses have been recently shown to encode a RNA polymerase-III-driven micro RNA cluster which likely modulates and regulates host-virus interactions at different levels. Using sub-genomic bovine foamy virus micro RNA expression plasmids and dual luciferase reporter assays as readout, the requirements for expression and processing of the bovine foamy virus micro RNAs have been analyzed. Here, we report that the minimal BFV micro RNA cassette is significantly weaker than a U6 promoter-based construct and strongly suppressed by flanking sequences. The primary micro RNA sequence can be manipulated and chimerized as long as the dumbbell-like folding of the primary micro RNA is maintained. Since more subtle changes are associated with reduced functionality, the overall structure and shape, but possibly individual elements and residues also, are important for the expression and processing of the bovine foamy virus micro RNAs.


Asunto(s)
Regulación Viral de la Expresión Génica , Secuencias Invertidas Repetidas , MicroARNs/química , MicroARNs/genética , ARN Viral , Infecciones por Retroviridae/virología , Spumavirus/genética , Animales , Bovinos , Línea Celular , Cricetinae , Perros , Orden Génico , Genes Reporteros , Genoma Viral , Humanos , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas
3.
J Clin Microbiol ; 55(6): 1658-1670, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28330894

RESUMEN

Traditional diagnostic assays often lack sensitivity and can be difficult to multiplex across many pathogens. Next-generation sequencing (NGS) can overcome some of these problems but has limited application in the detection of low-copy-number pathogens in complex samples. Targeted genome capture (TGC) utilizes oligonucleotide probes to enrich specific nucleic acids in heterogeneous extracts and can therefore increase the proportion of NGS reads for low-abundance targets. While earlier studies have demonstrated the utility of this technology for detection of novel pathogens in human clinical samples, the capacity and practicality of TGC-NGS in a veterinary diagnostic setting have not yet been evaluated. Here we report the use of TGC-NGS assays for the detection and characterization of diverse feline pathogen taxa. We detected 31 pathogens comprising nine pathogen taxa in 28 felid samples analyzed. This included 20 pathogens detected via traditional PCR and 11 additional pathogens that had not been previously detected in the same samples. Most of the pathogens detected were sequenced at sufficient breadth and depth to confidently classify them at the species or subspecies level. Target nucleic acids were enriched from a low of 58-fold to 56 million-fold relative to host nucleic acids. Despite the promising performance of these assays, a number of pathogens detected by conventional PCR or serology were not isolated by TGC-NGS, suggesting that further validation is required before this technology can be used in lieu of quality-controlled standard assays. We conclude that TGC-NGS offers great potential as a broad multiplex pathogen characterization assay in veterinary diagnostic and research settings.


Asunto(s)
Infecciones Bacterianas/veterinaria , Enfermedades de los Gatos/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Virosis/veterinaria , Animales , Infecciones Bacterianas/diagnóstico , Enfermedades de los Gatos/microbiología , Enfermedades de los Gatos/virología , Gatos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Virosis/diagnóstico
4.
Retrovirology ; 13(1): 57, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27549192

RESUMEN

BACKGROUND: Foamy viruses (FVs) of the Spumaretrovirinae subfamily are distinct retroviruses, with many features of their molecular biology and replication strategy clearly different from those of the Orthoretroviruses, such as human immunodeficiency, murine leukemia, and human T cell lymphotropic viruses. The FV Gag N-terminal region is responsible for capsid formation and particle budding via interaction with Env. However, the critical residues or motifs in this region and their functional interaction are currently ill-defined, especially in non-primate FVs. RESULTS: Mutagenesis of N-terminal Gag residues of feline FV (FFV) reveals key residues essential for either capsid assembly and/or viral budding via interaction with the FFV Env leader protein (Elp). In an in vitro Gag-Elp interaction screen, Gag mutations abolishing particle assembly also interfered with Elp binding, indicating that Gag assembly is a prerequisite for this highly specific interaction. Gradient sedimentation analyses of cytosolic proteins indicate that wild-type Gag is mostly assembled into virus capsids. Moreover, proteolytic processing of Gag correlates with capsid assembly and is mostly, if not completely, independent from particle budding. In addition, Gag processing correlates with the presence of packaging-competent FFV genomic RNA suggesting that Pol encapsidation via genomic RNA is a prerequisite for Gag processing. Though an appended heterogeneous myristoylation signal rescues Gag particle budding of mutants unable to form capsids or defective in interacting with Elp, it fails to generate infectious particles that co-package Pol, as evidenced by a lack of Gag processing. CONCLUSIONS: Changes in proteolytic Gag processing, intracellular capsid assembly, particle budding and infectivity of defined N-terminal Gag mutants highlight their essential, distinct and only partially overlapping roles during viral assembly and budding. Discussion of these findings will be based on a recent model developed for Gag-Elp interactions in prototype FV.


Asunto(s)
Cápside/metabolismo , Productos del Gen gag/metabolismo , Mutagénesis , Spumavirus/genética , Ensamble de Virus , Liberación del Virus , Animales , Proteínas de la Cápside/metabolismo , Gatos , Línea Celular , Productos del Gen gag/química , Productos del Gen gag/genética , Genoma Viral , Humanos , Modelos Moleculares , Fenotipo , Mutación Puntual , Spumavirus/ultraestructura
5.
J Virol ; 88(9): 4679-86, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24522910

RESUMEN

UNLABELLED: While numerous viral microRNAs (miRNAs) expressed by DNA viruses, especially herpesvirus family members, have been reported, there have been very few reports of miRNAs derived from RNA viruses. Here we describe three miRNAs expressed by bovine foamy virus (BFV), a member of the spumavirus subfamily of retroviruses, in both BFV-infected cultured cells and BFV-infected cattle. All three viral miRNAs are initially expressed in the form of an ∼ 122-nucleotide (nt) pri-miRNA, encoded within the BFV long terminal repeat U3 region, that is subsequently cleaved to generate two pre-miRNAs that are then processed to yield three distinct, biologically active miRNAs. The BFV pri-miRNA is transcribed by RNA polymerase III, and the three resultant mature miRNAs were found to contribute a remarkable ∼ 70% of all miRNAs expressed in BFV-infected cells. These data document the second example of a retrovirus that is able to express viral miRNAs by using embedded proviral RNA polymerase III promoters. IMPORTANCE: Foamy viruses are a ubiquitous family of nonpathogenic retroviruses that have potential as gene therapy vectors in humans. Here we demonstrate that bovine foamy virus (BFV) expresses high levels of three viral microRNAs (miRNAs) in BFV-infected cells in culture and also in infected cattle. The BFV miRNAs are unusual in that they are initially transcribed by RNA polymerase III as a single, ∼ 122-nt pri-miRNA that is subsequently processed to release three fully functional miRNAs. The observation that BFV, a foamy virus, is able to express viral miRNAs in infected cells adds to emerging evidence that miRNA expression is a common, albeit clearly not universal, property of retroviruses and suggests that these miRNAs may exert a significant effect on viral replication in vivo.


Asunto(s)
Enfermedades de los Bovinos/virología , Expresión Génica , MicroARNs/biosíntesis , Infecciones por Retroviridae/veterinaria , Spumavirus/crecimiento & desarrollo , Spumavirus/genética , Animales , Bovinos , Células Cultivadas , Masculino , MicroARNs/genética , Procesamiento Postranscripcional del ARN , Infecciones por Retroviridae/virología
6.
J Virol ; 87(6): 3516-25, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23325680

RESUMEN

Foamy viruses (FVs) are the least known retroviruses commonly found in primates, cats, horses, and cattle. Although FVs are considered apathogenic, simian and feline FVs have been shown to be associated with some transient health abnormalities in animal models. Currently, data regarding the course of infection with bovine FV (BFV) are not available. In this study, we conducted experimental infections of natural (cattle) and heterologous (sheep) hosts with the BFV(100) isolate and monitored infection patterns in both hosts during the early phase postinoculation as well as after long-term infection. Four calves and six sheep inoculated with BFV(100) showed no signs of pathology but developed persistent infection, as confirmed by virus rescue, consistent detection of BFV-specific antibodies, and presence of viral DNA. In both hosts, antibodies against BFV Gag and Bet appeared early after infection and persisted at high and stable levels while seroreactivity toward Env was consistently detectable only in BFV-infected sheep. Interestingly, the BFV proviral DNA load was highest in lung, spleen, and liver and moderate in leukocytes, while salivary glands contained either low or undetectable DNA loads in calves or sheep, respectively. Additionally, comparison of partial BFV sequences from inoculum and infected animals demonstrated very limited changes after long-term infection in the heterologous host, clearly less than those found in BFV field isolates. The persistence of BFV infection in both hosts suggests full replication competence of the BFV(100) isolate with no requirement of genetic adaptation for productive replication in the authentic and even in a heterologous host.


Asunto(s)
Enfermedades de los Bovinos/virología , Enfermedades de las Ovejas/virología , Spumavirus/patogenicidad , Animales , Anticuerpos Antivirales/sangre , Bovinos , Enfermedades de los Bovinos/patología , ADN Viral/química , ADN Viral/genética , ADN Viral/aislamiento & purificación , Modelos Animales de Enfermedad , Leucocitos/virología , Hígado/virología , Pulmón/virología , Datos de Secuencia Molecular , Glándulas Salivales/virología , Análisis de Secuencia de ADN , Ovinos , Enfermedades de las Ovejas/patología , Bazo/virología
7.
Retrovirology ; 10: 76, 2013 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-23880220

RESUMEN

BACKGROUND: APOBEC3 (A3) proteins restrict viral replication by cytidine deamination of viral DNA genomes and impairing reverse transcription and integration. To escape this restriction, lentiviruses have evolved the viral infectivity factor (Vif), which binds A3 proteins and targets them for proteolytic degradation. In contrast, foamy viruses (FVs) encode Bet proteins that allow replication in the presence of A3, apparently by A3 binding and/or sequestration, thus preventing A3 packaging into virions and subsequent restriction. Due to a long-lasting FV-host coevolution, Bet proteins mainly counteract restriction by A3s from their cognate or highly related host species. RESULTS: Through bioinformatics, we identified conserved motifs in Bet, all localized in the bel2 exon. In line with the localization of these conserved motifs within bel2, this part of feline FV (FFV) Bet has been shown to be essential for feline A3 (feA3) inactivation and feA3 protein binding. To study the function of the Bet motifs in detail, we analyzed the ability of targeted deletion, substitution, and chimeric FFV-PFV (prototype FV) Bet mutants to physically bind and/or inactivate feA3. Binding of Bet to feA3Z2b is sensitive to mutations in the first three conserved motifs and N- and C-terminal deletions and substitutions across almost the complete bel2 coding sequence. In contrast, the Bel1 (also designated Tas) domain of Bet is dispensable for basal feA3Z2b inactivation and binding but mainly increases the steady state level of Bet. Studies with PFV Bel1 and full-length FFV Bel2 chimeras confirmed the importance of Bel2 for A3 inactivation indicating that Bel1 is dispensable for basal feA3Z2b inactivation and binding but increases Bet stability. Moreover, the bel1/tas exon may be required for expression of a fully functional Bet protein from a spliced transcript. CONCLUSIONS: We show that the Bel2 domain of FV Bet is essential for the inactivation of APOBEC3 cytidine deaminase restriction factors. The Bel1/Tas domain increases protein stability and can be exchanged by related sequence. Since feA3 binding and inactivation by Bet are highly correlated, the data support the view that FV Bet prevents A3-mediated restriction of viral replication by creating strong complexes with these proteins.


Asunto(s)
Citosina Desaminasa/inmunología , Citosina Desaminasa/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas de los Retroviridae/inmunología , Proteínas de los Retroviridae/metabolismo , Spumavirus/fisiología , Animales , Gatos , Línea Celular , Unión Proteica , Spumavirus/inmunología
8.
J Virol ; 86(19): 10905-6, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22966195

RESUMEN

Bovine foamy virus (BFV), or bovine spumaretrovirus, is an infectious agent of cattle with no obvious disease association but high prevalence in its host. Here, we report two complete BFV sequences, BFV-Riems, isolated in 1978 in East Germany, and BFV100, isolated in 2005 in Poland. Both new BFV isolates share the overall genetic makeup of other foamy viruses (FV). Although isolated almost 25 years apart and propagated in either bovine (BFV-Riems) or nonbovine (BFV100) cells, both viruses are highly related, forming the European BFV clade. Despite clear differences, BFV-Riems and BFV100 are still very similar to BFV isolates from China and the United States, comprising the non-European BFV clade. The genomic sequences presented here confirm the concept of high sequence conservation across most of the FV genome. Analyses of cell culture-derived genomes reveal that proviral DNA may specifically lack introns in the env-bel coding region. The spacing of the splice sites in this region suggests that BFV has developed a novel mode to express a secretory but nonfunctional Env protein.


Asunto(s)
Análisis de Secuencia de ADN , Spumavirus/genética , Animales , Bovinos , Europa (Continente) , Genoma Viral , Alemania , Humanos , Datos de Secuencia Molecular , Polonia , Especificidad de la Especie
9.
Viruses ; 15(8)2023 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-37632114

RESUMEN

Bovine foamy virus (BFVbta) displays a very high degree of cell-associated replication which is unprecedented even among the other known foamy viruses. Interestingly, recent studies have shown that it can in fact adapt in vitro to high-titer (HT) cell-free transmission due to genetic changes acquired during repeated rounds of cell-free BFVbta passages in immortalized bovine MDBK cells. Molecular clones obtained from the HT BFVbta Riems cell-free variant (HT BFVbta Riems) have been thoroughly characterized in MDBK cell cultures However, during recent years, it has become increasingly clear that the source of the host cells used for virus growth and functional studies of virus replication and virus-cell interactions plays a paramount role. Established cell lines, mostly derived from tumors, but occasionally experimentally immortalized and transformed, frequently display aberrant features relating, for example. to growth, metabolism, and genetics. Even state-of-the-art organoid cultures of primary cells cannot replicate the conditions in an authentic host, especially those concerning cell diversity and the role of innate and adaptive immunity. Therefore, to determine the overall replication characteristics of the cloned wt and HT BFVbta Riems variant, we conducted a small-scale animal pilot study. The replication of the original wt BFVbta Riems isolate, as well as that of its HT variant, were analyzed. Both BFVbta variants established infection in calves, with proviruses in peripheral blood mononuclear cells and induced Gag-specific antibodies. In addition, a related pattern in the host innate immune reaction was detected in the peripheral blood leukocytes of the BFV-infected calves. Surprisingly, an analysis of the Gag sequence two weeks post-inoculation revealed that the HT BFVbta variant showed a very high level of genetic reversion to the wild type (parental BFVbta genotype).


Asunto(s)
Leucocitos Mononucleares , Spumavirus , Animales , Bovinos , Proyectos Piloto , Técnicas de Cultivo de Célula , Spumavirus/genética , Inmunidad Innata
10.
Protein Expr Purif ; 81(1): 96-105, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21964437

RESUMEN

The production of recombinant transmembrane proteins is due to their biochemical properties often troublesome and time consuming. Here the prokaryotic expression and purification of the transmembrane envelope proteins of the feline and primate foamy viruses using a screening assay for optimisation of expression in 96 deep well plates is described. Testing simultaneously various bacterial strains, media, temperatures, inducer concentrations and different transformants, conditions for an about twentyfold increased production were quickly determined. These small scale test conditions could be easily scaled up, allowing purification of milligram amounts of recombinant protein. Proteins with a purity of about 95% were produced using a new purification protocol, they were characterised by gel filtration and circular dichroism and successfully applied in immunological assays screening for foamy virus infection and in immunisation studies. Compared to the previously described protocol (M. Mühle, A. Bleiholder, S. Kolb, J. Hübner, M. Löchelt, J. Denner, Immunological properties of the transmembrane envelope protein of the feline foamy virus and its use for serological screening, Virology 412 (2011) 333-340), proteins with similar characteristics but about thirtyfold increased yields were obtained. The screening and production method presented here can also be applied for the production of transmembrane envelope proteins of other retroviruses, including HIV-1.


Asunto(s)
Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/aislamiento & purificación , Spumavirus/genética , Proteínas del Envoltorio Viral/biosíntesis , Proteínas del Envoltorio Viral/aislamiento & purificación , Cromatografía en Gel , Dicroismo Circular , Clonación Molecular , Ensayo de Inmunoadsorción Enzimática , Escherichia coli/genética , Glutatión Transferasa/genética , Ensayos Analíticos de Alto Rendimiento , Plásmidos , Replegamiento Proteico , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Sarcosina/análogos & derivados , Solubilidad , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética
11.
Viruses ; 14(9)2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36146781

RESUMEN

Equine foamy virus (EFVeca) is a foamy virus of non-primate origin and among the least-studied members of this retroviral subfamily. By sequence comparison, EFVeca shows the highest similarity to bovine foamy virus. In contrast to simian, bovine or feline foamy viruses, knowledge about the epidemiology of EFVeca is still limited. Since preliminary studies suggested EFVeca infections among horses in Poland, we aimed to expand the diagnostics of EFVeca infections by developing specific diagnostic tools and apply them to investigate its prevalence. An ELISA test based on recombinant EFVeca Gag protein was developed for serological investigation, while semi-nested PCR for the detection of EFVeca DNA was established. 248 DNA and serum samples from purebred horses, livestock and saddle horses, Hucul horses and semi-feral Polish primitive horses were analyzed in this study. ELISA was standardized, and cut off value, sensitivity and specificity of the test were calculated using Receiver Operating Characteristic and Bayesian estimation. Based on the calculated cut off, 135 horses were seropositive to EFVeca Gag protein, while EFVeca proviral DNA was detected in 85 animals. The rate of infected individuals varied among the horse groups studied; this is the first report confirming the existence of EFVeca infections in horses from Poland using virus-specific tools.


Asunto(s)
Enfermedades de los Caballos , Spumavirus , Virosis , Animales , Teorema de Bayes , Gatos , Productos del Gen gag , Enfermedades de los Caballos/diagnóstico , Enfermedades de los Caballos/epidemiología , Caballos , Polonia/epidemiología , Spumavirus/genética
12.
J Virol ; 84(14): 7312-24, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20444897

RESUMEN

To get more insight into the role of APOBEC3 (A3) cytidine deaminases in the species-specific restriction of feline immunodeficiency virus (FIV) of the domestic cat, we tested the A3 proteins present in big cats (puma, lion, tiger, and lynx). These A3 proteins were analyzed for expression and sensitivity to the Vif protein of FIV. While A3Z3s and A3Z2-Z3s inhibited Deltavif FIV, felid A3Z2s did not show any antiviral activity against Deltavif FIV or wild-type (wt) FIV. All felid A3Z3s and A3Z2-Z3s were sensitive to Vif of the domestic cat FIV. Vif also induced depletion of felid A3Z2s. Tiger A3s showed a moderate degree of resistance against the Vif-mediated counter defense. These findings may imply that the A3 restriction system does not play a major role to prevent domestic cat FIV transmission to other Felidae. In contrast to the sensitive felid A3s, many nonfelid A3s actively restricted wt FIV replication. To test whether Vif(FIV) can protect also the distantly related human immunodeficiency virus type 1 (HIV-1), a chimeric HIV-1.Vif(FIV) was constructed. This HIV-1.Vif(FIV) was replication competent in nonpermissive feline cells expressing human CD4/CCR5 that did not support the replication of wt HIV-1. We conclude that the replication of HIV-1 in some feline cells is inhibited only by feline A3 restriction factors and the absence of the appropriate receptor or coreceptor.


Asunto(s)
Citosina Desaminasa/metabolismo , Felidae/metabolismo , Felidae/virología , Síndrome de Inmunodeficiencia Adquirida del Felino/virología , Productos del Gen vif/metabolismo , Virus de la Inmunodeficiencia Felina/metabolismo , Isoenzimas/metabolismo , Animales , Gatos , Línea Celular , Citosina Desaminasa/genética , Felidae/genética , Productos del Gen vif/genética , Humanos , Virus de la Inmunodeficiencia Felina/genética , Isoenzimas/genética , Empalme del ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
13.
Viruses ; 13(1)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33451128

RESUMEN

Within the family of Retroviridae, foamy viruses (FVs) are unique and unconventional with respect to many aspects in their molecular biology, including assembly and release of enveloped viral particles. Both components of the minimal assembly and release machinery, Gag and Env, display significant differences in their molecular structures and functions compared to the other retroviruses. This led to the placement of FVs into a separate subfamily, the Spumaretrovirinae. Here, we describe the molecular differences in FV Gag and Env, as well as Pol, which is translated as a separate protein and not in an orthoretroviral manner as a Gag-Pol fusion protein. This feature further complicates FV assembly since a specialized Pol encapsidation strategy via a tripartite Gag-genome-Pol complex is used. We try to relate the different features and specific interaction patterns of the FV Gag, Pol, and Env proteins in order to develop a comprehensive and dynamic picture of particle assembly and release, but also other features that are indirectly affected. Since FVs are at the root of the retrovirus tree, we aim at dissecting the unique/specialized features from those shared among the Spuma- and Orthoretrovirinae. Such analyses may shed light on the evolution and characteristics of virus envelopment since related viruses within the Ortervirales, for instance LTR retrotransposons, are characterized by different levels of envelopment, thus affecting the capacity for intercellular transmission.


Asunto(s)
Infecciones por Retroviridae/virología , Spumavirus/fisiología , Ensamble de Virus , Fenómenos Fisiológicos de los Virus , Cápside/metabolismo , Genoma Viral , Interacciones Huésped-Patógeno , Humanos , Spumavirus/ultraestructura , Proteínas Virales/metabolismo , Liberación del Virus , Replicación Viral
14.
J Vet Res ; 65(4): 407-413, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35111993

RESUMEN

INTRODUCTION: Feline foamy virus (FFVfca) is widespread and its prevalence in naturally infected domestic cats ranges between 30% and 80% worldwide. The infection is persistent, with a sustained antibody response in FFVfca-positive cats; however to date, no defined disease or clinical symptoms have been proved to be associated with it. The goal of the presented study was to determine the prevalence of FFVfca infection in domestic cats in Poland. MATERIAL AND METHODS: A total of 223 serum samples collected from domestic cats were tested with a glutathione S-transferase capture ELISA test to detect antibodies specific to capsid (Gag), accessory (Bet) and envelope (Env) FFVfca antigens. A Western blot test was used to confirm the ELISA results. RESULTS: The cut-off value for the Gag antigen was established by calculation and evaluation with the immunoblotting assay. The cut-off values for Bet and Env were calculated from the reactivity of Gag-negative samples. The sera of 99 cats (44%) showed reactivity to Gag, those of 80 did so (35.9 %) to Bet, while only 56 samples (25%) were reactive to Env. Only 51 (22.9%) sera were positive for all antigens. The main diagnostic antigen was selected to be Gag. A statistically significant association was found between FFVfca status and the age of the cat. CONCLUSIONS: This study proved the high seroprevalence of FFVfca in domestic cats in Poland for the first time and confirmed that adult cats are at higher FFVfca infection risk than preadult cats. Its results correspond to those reported from other countries.

15.
Viruses ; 12(1)2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947727

RESUMEN

Foamy viruses (FVs) are widely distributed and infect many animal species including non-human primates, horses, cattle, and cats. Several reports also suggest that other species can be FV hosts. Since most of such studies involved livestock or companion animals, we aimed to test blood samples from wild ruminants for the presence of FV-specific antibodies and, subsequently, genetic material. Out of 269 serum samples tested by ELISA with the bovine foamy virus (BFV) Gag and Bet antigens, 23 sera showed increased reactivity to at least one of them. High reactive sera represented 30% of bison samples and 7.5% of deer specimens. Eleven of the ELISA-positives were also strongly positive in immunoblot analyses. The peripheral blood DNA of seroreactive animals was tested by semi-nested PCR. The specific 275 bp fragment of the pol gene was amplified only in one sample collected from a red deer and the analysis of its sequence showed the highest homology for European BFV isolates. Such results may suggest the existence of a new FV reservoir in bison as well as in deer populations. Whether the origin of such infections stems from a new FV or is the result of BFV inter-species transmission remains to be clarified.


Asunto(s)
Reservorios de Enfermedades/veterinaria , Infecciones por Retroviridae/veterinaria , Rumiantes/virología , Spumavirus/aislamiento & purificación , Animales , Animales Salvajes , Anticuerpos Antivirales/sangre , Bison/virología , ADN Viral/sangre , ADN Viral/genética , Ciervos/virología , Reservorios de Enfermedades/virología , Filogenia , Polonia/epidemiología , Prevalencia , Infecciones por Retroviridae/epidemiología , Infecciones por Retroviridae/transmisión , Infecciones por Retroviridae/virología , Proteínas de los Retroviridae/genética , Proteínas de los Retroviridae/inmunología , Spumavirus/clasificación , Spumavirus/genética , Spumavirus/inmunología , Secuencias Repetidas Terminales/genética
16.
Viruses ; 12(11)2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33147813

RESUMEN

In addition to regulatory or accessory proteins, some complex retroviruses gain a repertoire of micro-RNAs (miRNAs) to regulate and control virus-host interactions for efficient replication and spread. In particular, bovine and simian foamy viruses (BFV and SFV) have recently been shown to express a diverse set of RNA polymerase III-directed miRNAs, some with a unique primary miRNA double-hairpin, dumbbell-shaped structure not known in other viruses or organisms. While the mechanisms of expression and structural requirements have been studied, the functional importance of these miRNAs is still far from understood. Here, we describe the in silico identification of BFV miRNA targets and the subsequent experimental validation of bovine Ankyrin Repeat Domain 17 (ANKRD17) and Bax-interacting factor 1 (Bif1) target genes in vitro and, finally, the suppression of ANKRD17 downstream genes in the affected pathway. Deletion of the entire miRNA cassette in the non-coding part of the U3 region of the long terminal repeats attenuated replication of corresponding BFV mutants in bovine cells. This repression can be almost completely trans-complemented by the most abundant miRNA BF2-5p having the best scores for predicted and validated BFV miRNA target genes. Deletion of the miRNA cassette does not grossly affect particle release and overall particle composition.


Asunto(s)
Interacciones Microbiota-Huesped/genética , MicroARNs/genética , Spumavirus/genética , Replicación Viral , Animales , Bovinos , Línea Celular , Simulación por Computador , Interacciones Huésped-Patógeno , Virus Espumoso de los Simios/genética , Spumavirus/fisiología , Secuencias Repetidas Terminales
17.
Infect Genet Evol ; 82: 104287, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32179148

RESUMEN

During in vitro selection and evolution screens to adapt the tightly cell-associated bovine foamy virus BFV to high titer cell-free transmission, common, cell-type specific and concurrent adaptive changes in Gag and Env, the major players of foamy virus particle assembly and release, were detected. Upon early establishment of cell type-independent pioneering mutations in Env and, subsequently in Gag, a diverse virus pool emerged that was characterized by the occurrence of shared and additional cell type-specific exchanges. At late passages and saturated titers, remarkably homogeneous virus populations characterized by functionally important mutations developed which may be partly due to stochastic evolutionary events that occurred earlier during adaptation. Reverse genetics showed that defined mutations were functionally important for high titer cell-free transmission.


Asunto(s)
Productos del Gen env/genética , Productos del Gen gag/genética , Interacciones Huésped-Patógeno/fisiología , Spumavirus/patogenicidad , Adaptación Biológica , Animales , Bovinos , Línea Celular , Cricetinae , Productos del Gen env/metabolismo , Productos del Gen gag/metabolismo , Células HEK293 , Humanos , Infecciones por Retroviridae/transmisión , Infecciones por Retroviridae/virología , Genética Inversa , Ensamble de Virus
18.
Int J Cancer ; 124(6): 1330-7, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19065656

RESUMEN

Cancer cells display high rates of aerobic glycolysis, a phenomenon known as the Warburg effect. Lactate and pyruvate, the end products of glycolysis, are overproduced by cancer cells even in the presence of oxygen. The pentose phosphate pathway (PPP) allows glucose conversion to ribose for nucleic acid synthesis, glucose degradation to lactate, and regeneration of redox equivalents. The nonoxidative part of the PPP is controlled by transketolase (TKT) enzymes. One TKT isoform, the transketolase-like protein 1 (TKTL1) is specifically upregulated in different human cancers and its overexpression predicts a poor patient's survival. This finding implicates that an increased TKTL1 expression may activate the PPP leading to enhanced cancer cell growth and survival. To analyze the functional role of TKTL1 in malignant progression, we inhibited TKTL1 by RNAi technologies in human HCT116 colon carcinoma cells. TKTL1 suppression resulted in a significantly slowed cell growth, glucose consumption and lactate production. In TKTL1 knockdown-cells, the intracellular reactive oxygen species levels were not significantly increased, whereas the sensitivity towards oxidative stress-induced apoptosis was clearly enhanced. These data provide new clues on the importance of TKTL1 dys-regulation in tumor cells and indicate that TKTL1 overexpression may be considered not only as a new tumor marker but also as a good target for anticancer therapy.


Asunto(s)
Neoplasias del Colon/patología , Transcetolasa/metabolismo , Adenosina Trifosfato/metabolismo , Apoptosis , Ciclo Celular , División Celular , Supervivencia Celular , Neoplasias del Colon/enzimología , Neoplasias del Colon/genética , Cartilla de ADN , Glucosa/metabolismo , Glutatión/metabolismo , Células HCT116 , Humanos , Ácido Láctico/metabolismo , ARN Mensajero/genética , ARN Neoplásico/genética , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección , Transcetolasa/genética
20.
Viruses ; 11(12)2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31766538

RESUMEN

The retroviral subfamily of Spumaretrovirinae consists of five genera of foamy (spuma) viruses (FVs) that are endemic in some mammalian hosts [1]. Closely related species may be susceptible to the same or highly related FVs. FVs are not known to induce overt disease and thus do not pose medical problems to humans and livestock or companion animals. A robust lab animal model is not available or is a lab animal a natural host of a FV. Due to this, research is limited and often focused on the simian FVs with their well-established zoonotic potential. The authors of this review and their groups have conducted several studies on bovine FV (BFV) in the past with the intention of (i) exploring the risk of zoonotic infection via beef and raw cattle products, (ii) studying a co-factorial role of BFV in different cattle diseases with unclear etiology, (iii) exploring unique features of FV molecular biology and replication strategies in non-simian FVs, and (iv) conducting animal studies and functional virology in BFV-infected calves as a model for corresponding studies in primates or small lab animals. These studies gained new insights into FV-host interactions, mechanisms of gene expression, and transcriptional regulation, including miRNA biology, host-directed restriction of FV replication, spread and distribution in the infected animal, and at the population level. The current review attempts to summarize these findings in BFV and tries to connect them to findings from other FVs.


Asunto(s)
Enfermedades de los Bovinos/virología , Regulación Viral de la Expresión Génica/genética , Interacciones Huésped-Patógeno , Infecciones por Retroviridae/veterinaria , Spumavirus/fisiología , Animales , Bovinos , Modelos Animales de Enfermedad , Humanos , MicroARNs/genética , Filogenia , Infecciones por Retroviridae/virología , Spumavirus/genética , Replicación Viral , Zoonosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA