Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 108: 135-147, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36323361

RESUMEN

BACKGROUND: Circulating autoantibodies (AB) against brain-antigens, often deemed pathological, receive increasing attention. We assessed predispositions and seroprevalence/characteristics of 49 AB in > 7000 individuals. METHODS: Exploratory cross-sectional cohort study, investigating deeply phenotyped neuropsychiatric patients and healthy individuals of GRAS Data Collection for presence/characteristics of 49 brain-directed serum-AB. Predispositions were evaluated through GWAS of NMDAR1-AB carriers, analyses of immune check-point genotypes, APOE4 status, neurotrauma. Chi-square, Fisher's exact tests and logistic regression analyses were used. RESULTS: Study of N = 7025 subjects (55.8 % male; 41 ±â€¯16 years) revealed N = 1133 (16.13 %) carriers of any AB against 49 defined brain-antigens. Overall, age dependence of seroprevalence (OR = 1.018/year; 95 % CI [1.015-1.022]) emerged, but no disease association, neither general nor with neuropsychiatric subgroups. Males had higher AB seroprevalence (OR = 1.303; 95 % CI [1.144-1.486]). Immunoglobulin class (N for IgM:462; IgA:487; IgG:477) and titers were similar. Abundant were NMDAR1-AB (7.7 %). Low seroprevalence (1.25 %-0.02 %) was seen for most AB (e.g., amphiphysin, KCNA2, ARHGAP26, GFAP, CASPR2, MOG, Homer-3, KCNA1, GLRA1b, GAD65). Non-detectable were others. GWAS of NMDAR1-AB carriers revealed three genome-wide significant SNPs, two intergenic, one in TENM3, previously autoimmune disease-associated. Targeted analysis of immune check-point genotypes (CTLA4, PD1, PD-L1) uncovered effects on humoral anti-brain autoimmunity (OR = 1.55; 95 % CI [1.058-2.271]) and disease likelihood (OR = 1.43; 95 % CI [1.032-1.985]). APOE4 carriers (∼19 %) had lower seropositivity (OR = 0.766; 95 % CI [0.625-0.933]). Neurotrauma predisposed to NMDAR1-AB seroprevalence (IgM: OR = 1.599; 95 % CI [1.022-2.468]). CONCLUSIONS: Humoral autoimmunity against brain-antigens, frequent across health and disease, is predicted by age, gender, genetic predisposition, and brain injury. Seroprevalence, immunoglobulin class, or titers do not predict disease.


Asunto(s)
Autoanticuerpos , Autoinmunidad , Femenino , Humanos , Masculino , Apolipoproteína E4 , Estudios Transversales , Isotipos de Inmunoglobulinas , Inmunoglobulina M , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Estudios Seroepidemiológicos , Adulto , Persona de Mediana Edad
2.
Mol Psychiatry ; 27(12): 4974-4983, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34866134

RESUMEN

Encephalitis has an estimated prevalence of ≤0.01%. Even with extensive diagnostic work-up, an infectious etiology is identified or suspected in <50% of cases, suggesting a role for etiologically unclear, noninfectious processes. Mild encephalitis runs frequently unnoticed, despite slight neuroinflammation detectable postmortem in many neuropsychiatric illnesses. A widely unexplored field in humans, though clearly documented in rodents, is genetic brain inflammation, particularly that associated with myelin abnormalities, inducing primary white matter encephalitis. We hypothesized that "autoimmune encephalitides" may result from any brain inflammation concurring with the presence of brain antigen-directed autoantibodies, e.g., against N-methyl-D-aspartate-receptor NR1 (NMDAR1-AB), which are not causal of, but may considerably shape the encephalitis phenotype. We therefore immunized young female Cnp-/- mice lacking the structural myelin protein 2'-3'-cyclic nucleotide 3'-phosphodiesterase (Cnp) with a "cocktail" of NMDAR1 peptides. Cnp-/- mice exhibit early low-grade inflammation of white matter tracts and blood-brain barrier disruption. Our novel mental-time-travel test disclosed that Cnp-/- mice are compromised in what-where-when orientation, but this episodic memory readout was not further deteriorated by NMDAR1-AB. In contrast, comparing wild-type and Cnp-/- mice without/with NMDAR1-AB regarding hippocampal learning/memory and motor balance/coordination revealed distinct stair patterns of behavioral pathology. To elucidate a potential contribution of oligodendroglial NMDAR downregulation to NMDAR1-AB effects, we generated conditional NR1 knockout mice. These mice displayed normal Morris water maze and mental-time-travel, but beam balance performance was similar to immunized Cnp-/-. Immunohistochemistry confirmed neuroinflammation/neurodegeneration in Cnp-/- mice, yet without add-on effect of NMDAR1-AB. To conclude, genetic brain inflammation may explain an encephalitic component underlying autoimmune conditions.


Asunto(s)
Encefalitis , Sustancia Blanca , Humanos , Femenino , Ratones , Animales , Autoanticuerpos , Enfermedades Neuroinflamatorias , Receptores de N-Metil-D-Aspartato , Inflamación , Fenotipo
3.
Mol Psychiatry ; 26(12): 7746-7759, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34331009

RESUMEN

The etiology and pathogenesis of "anti-N-methyl-D-aspartate-receptor (NMDAR) encephalitis" and the role of autoantibodies (AB) in this condition are still obscure. While NMDAR1-AB exert NMDAR-antagonistic properties by receptor internalization, no firm evidence exists to date that NMDAR1-AB by themselves induce brain inflammation/encephalitis. NMDAR1-AB of all immunoglobulin classes are highly frequent across mammals with multiple possible inducers and boosters. We hypothesized that "NMDAR encephalitis" results from any primary brain inflammation coinciding with the presence of NMDAR1-AB, which may shape the encephalitis phenotype. Thus, we tested whether following immunization with a "cocktail" of 4 NMDAR1 peptides, induction of a spatially and temporally defined sterile encephalitis by diphtheria toxin-mediated ablation of pyramidal neurons ("DTA" mice) would modify/aggravate the ensuing phenotype. In addition, we tried to replicate a recent report claiming that immunizing just against the NMDAR1-N368/G369 region induced brain inflammation. Mice after DTA induction revealed a syndrome comprising hyperactivity, hippocampal learning/memory deficits, prefrontal cortical network dysfunction, lasting blood brain-barrier impairment, brain inflammation, mainly in hippocampal and cortical regions with pyramidal neuronal death, microgliosis, astrogliosis, modest immune cell infiltration, regional atrophy, and relative increases in parvalbumin-positive interneurons. The presence of NMDAR1-AB enhanced the hyperactivity (psychosis-like) phenotype, whereas all other readouts were identical to control-immunized DTA mice. Non-DTA mice with or without NMDAR1-AB were free of any encephalitic signs. Replication of the reported NMDAR1-N368/G369-immunizing protocol in two large independent cohorts of wild-type mice completely failed. To conclude, while NMDAR1-AB can contribute to the behavioral phenotype of an underlying encephalitis, induction of an encephalitis by NMDAR1-AB themselves remains to be proven.


Asunto(s)
Encefalitis , Receptores de N-Metil-D-Aspartato , Animales , Autoanticuerpos , Barrera Hematoencefálica , Ratones , Células Piramidales
4.
Mol Psychiatry ; 26(6): 2471-2482, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32089545

RESUMEN

Circulating autoantibodies (AB) of different immunoglobulin classes (IgM, IgA, and IgG), directed against the obligatory N-methyl-D-aspartate-receptor subunit NR1 (NMDAR1-AB), belong to the mammalian autoimmune repertoire, and appear with age-dependently high seroprevalence across health and disease. Upon access to the brain, they can exert NMDAR-antagonistic/ketamine-like actions. Still unanswered key questions, addressed here, are conditions of NMDAR1-AB formation/boosting, intraindividual persistence/course in serum over time, and (patho)physiological significance of NMDAR1-AB in modulating neuropsychiatric phenotypes. We demonstrate in a translational fashion from mouse to human that (1) serum NMDAR1-AB fluctuate upon long-term observation, independent of blood-brain barrier (BBB) perturbation; (2) a standardized small brain lesion in juvenile mice leads to increased NMDAR1-AB seroprevalence (IgM + IgG), together with enhanced Ig-class diversity; (3) CTLA4 (immune-checkpoint) genotypes, previously found associated with autoimmune disease, predispose to serum NMDAR1-AB in humans; (4) finally, pursuing our prior findings of an early increase in NMDAR1-AB seroprevalence in human migrants, which implicated chronic life stress as inducer, we independently replicate these results with prospectively recruited refugee minors. Most importantly, we here provide the first experimental evidence in mice of chronic life stress promoting serum NMDAR1-AB (IgA). Strikingly, stress-induced depressive-like behavior in mice and depression/anxiety in humans are reduced in NMDAR1-AB carriers with compromised BBB where NMDAR1-AB can readily reach the brain. To conclude, NMDAR1-AB may have a role as endogenous NMDAR antagonists, formed or boosted under various circumstances, ranging from genetic predisposition to, e.g., tumors, infection, brain injury, and stress, altogether increasing over lifetime, and exerting a spectrum of possible effects, also including beneficial functions.


Asunto(s)
Autoanticuerpos , Lesiones Encefálicas , Animales , Barrera Hematoencefálica , Ratones , Receptores de N-Metil-D-Aspartato , Estudios Seroepidemiológicos , Estrés Psicológico
5.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34445189

RESUMEN

Tamoxifen is frequently used in murine knockout systems with CreER/LoxP. Besides possible neuroprotective effects, tamoxifen is described as having a negative impact on adult neurogenesis. The present study investigated the effect of a high-dose tamoxifen application on Theiler's murine encephalomyelitis virus (TMEV)-induced hippocampal damage. Two weeks after TMEV infection, 42% of the untreated TMEV-infected mice were affected by marked inflammation with neuronal loss, whereas 58% exhibited minor inflammation without neuronal loss. Irrespective of the presence of neuronal loss, untreated mice lacked TMEV antigen expression within the hippocampus at 14 days post-infection (dpi). Interestingly, tamoxifen application 0, 2 and 4, or 5, 7 and 9 dpi decelerated virus elimination and markedly increased neuronal loss to 94%, associated with increased reactive astrogliosis at 14 dpi. T cell infiltration, microgliosis and expression of water channels were similar within the inflammatory lesions, regardless of tamoxifen application. Applied at 0, 2 and 4 dpi, tamoxifen had a negative impact on the number of doublecortin (DCX)-positive cells within the dentate gyrus (DG) at 14 dpi, without a long-lasting effect on neuronal loss at 147 dpi. Thus, tamoxifen application during a TMEV infection is associated with transiently increased neuronal loss in the hippocampus, increased reactive astrogliosis and decreased neurogenesis in the DG.


Asunto(s)
Antagonistas de Estrógenos/efectos adversos , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Tamoxifeno/efectos adversos , Animales , Infecciones por Cardiovirus/complicaciones , Infecciones por Cardiovirus/patología , Infecciones por Cardiovirus/veterinaria , Muerte Celular/efectos de los fármacos , Proteína Doblecortina , Hipocampo/patología , Ratones Endogámicos C57BL , Neuronas/patología , Theilovirus/fisiología
6.
J Neuroinflammation ; 17(1): 9, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31915017

RESUMEN

BACKGROUND: The multi-drug resistance transporter ABCG2, a member of the ATP-binding cassette (ABC) transporter family, mediates the efflux of different immunotherapeutics used in multiple sclerosis (MS), e.g., teriflunomide (teri), cladribine, and mitoxantrone, across cell membranes and organelles. Hence, the modulation of ABCG2 activity could have potential therapeutic implications in MS. In this study, we aimed at investigating the functional impact of abcg2 modulation on teri-induced effects in vitro and in vivo. METHODS: T cells from C57BL/6 J wild-type (wt) and abcg2-knockout (KO) mice were treated with teri at different concentrations with/without specific abcg2-inhibitors (Ko143; Fumitremorgin C) and analyzed for intracellular teri concentration (HPLC; LS-MS/MS), T cell apoptosis (annexin V/PI), and proliferation (CSFE). Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6J by active immunization with MOG35-55/CFA. Teri (10 mg/kg body weight) was given orally once daily after individual disease onset. abcg2-mRNA expression (spinal cord, splenic T cells) was analyzed using qRT-PCR. RESULTS: In vitro, intracellular teri concentration in T cells was 2.5-fold higher in abcg2-KO mice than in wt mice. Teri-induced inhibition of T cell proliferation was two fold increased in abcg2-KO cells compared to wt cells. T cell apoptosis demonstrated analogous results with 3.1-fold increased apoptosis after pharmacological abcg2-inhibition in wt cells. abcg2-mRNA was differentially regulated during different phases of EAE within the central nervous system and peripheral organs. In vivo, at a dosage not efficacious in wt animals, teri treatment ameliorated clinical EAE in abcg2-KO mice which was accompanied by higher spinal cord tissue concentrations of teri. CONCLUSION: Functional relevance of abcg2 modulation on teri effects in vitro and in vivo warrants further investigation as a potential determinant of interindividual treatment response in MS, with potential implications for other immunotherapies.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/fisiología , Crotonatos/uso terapéutico , Modelos Animales de Enfermedad , Inmunoterapia/métodos , Esclerosis Múltiple/inmunología , Linfocitos T/inmunología , Toluidinas/uso terapéutico , Animales , Crotonatos/farmacología , Femenino , Humanos , Hidroxibutiratos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Esclerosis Múltiple/tratamiento farmacológico , Nitrilos , Ratas , Linfocitos T/efectos de los fármacos , Toluidinas/farmacología
7.
Acta Neuropathol ; 140(4): 549-567, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32651669

RESUMEN

The proinflammatory cytokine interleukin 1 (IL-1) is crucially involved in the pathogenesis of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Herein, we studied the role of IL-1 signaling in blood-brain barrier (BBB) endothelial cells (ECs), astrocytes and microglia for EAE development, using mice with the conditional deletion of its signaling receptor IL-1R1. We found that IL-1 signaling in microglia and astrocytes is redundant for the development of EAE, whereas the IL-1R1 deletion in BBB-ECs markedly ameliorated disease severity. IL-1 signaling in BBB-ECs upregulated the expression of the adhesion molecules Vcam-1, Icam-1 and the chemokine receptor Darc, all of which have been previously shown to promote CNS-specific inflammation. In contrast, IL-1R1 signaling suppressed the expression of the stress-responsive heme catabolizing enzyme heme oxygenase-1 (HO-1) in BBB-ECs, promoting disease progression via a mechanism associated with deregulated expression of the IL-1-responsive genes Vcam1, Icam1 and Ackr1 (Darc). Mechanistically, our data emphasize a functional crosstalk of BBB-EC IL-1 signaling and HO-1, controlling the transcription of downstream proinflammatory genes promoting the pathogenesis of autoimmune neuroinflammation.


Asunto(s)
Barrera Hematoencefálica/enzimología , Encefalomielitis Autoinmune Experimental/inmunología , Células Endoteliales/enzimología , Hemo-Oxigenasa 1/metabolismo , Inflamación/inmunología , Interleucina-1/inmunología , Animales , Barrera Hematoencefálica/inmunología , Encefalomielitis Autoinmune Experimental/enzimología , Regulación de la Expresión Génica/inmunología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/inmunología
8.
Mol Psychiatry ; 24(10): 1489-1501, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-29426955

RESUMEN

Autoantibodies of the IgG class against N-methyl-D-aspartate-receptor subunit-NR1 (NMDAR1-AB) were considered pathognomonic for anti-NMDAR encephalitis. This view has been challenged by the age-dependent seroprevalence (up to >20%) of functional NMDAR1-AB of all immunoglobulin classes found in >5000 individuals, healthy or affected by different diseases. These findings question a merely encephalitogenic role of NMDAR1-AB. Here, we show that NMDAR1-AB belong to the normal autoimmune repertoire of dogs, cats, rats, mice, baboons, and rhesus macaques, and are functional in the NMDAR1 internalization assay based on human IPSC-derived cortical neurons. The age dependence of seroprevalence is lost in nonhuman primates in captivity and in human migrants, raising the intriguing possibility that chronic life stress may be related to NMDAR1-AB formation, predominantly of the IgA class. Active immunization of ApoE-/- and ApoE+/+ mice against four peptides of the extracellular NMDAR1 domain or ovalbumin (control) leads to high circulating levels of specific AB. After 4 weeks, the endogenously formed NMDAR1-AB (IgG) induce psychosis-like symptoms upon MK-801 challenge in ApoE-/- mice, characterized by an open blood-brain barrier, but not in their ApoE+/+ littermates, which are indistinguishable from ovalbumin controls. Importantly, NMDAR1-AB do not induce any sign of inflammation in the brain. Immunohistochemical staining for microglial activation markers and T lymphocytes in the hippocampus yields comparable results in ApoE-/- and ApoE+/+ mice, irrespective of immunization against NMDAR1 or ovalbumin. These data suggest that NMDAR1-AB of the IgG class shape behavioral phenotypes upon access to the brain but do not cause brain inflammation on their own.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato/inmunología , Trastornos Mentales/inmunología , Receptores de N-Metil-D-Aspartato/inmunología , Adulto , Animales , Autoanticuerpos/inmunología , Barrera Hematoencefálica , Encéfalo/inmunología , Gatos , Perros , Femenino , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Masculino , Ratones , Proteínas del Tejido Nervioso/inmunología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/inmunología , Primates , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Estudios Seroepidemiológicos
9.
Proc Natl Acad Sci U S A ; 114(2): E181-E190, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28049829

RESUMEN

Pregnancy is one of the strongest inducers of immunological tolerance. Disease activity of many autoimmune diseases including multiple sclerosis (MS) is temporarily suppressed by pregnancy, but little is known about the underlying molecular mechanisms. Here, we investigated the endocrine regulation of conventional and regulatory T cells (Tregs) during reproduction. In vitro, we found the pregnancy hormone progesterone to robustly increase Treg frequencies via promiscuous binding to the glucocorticoid receptor (GR) in T cells. In vivo, T-cell-specific GR deletion in pregnant animals undergoing experimental autoimmune encephalomyelitis (EAE), the animal model of MS, resulted in a reduced Treg increase and a selective loss of pregnancy-induced protection, whereas reproductive success was unaffected. Our data imply that steroid hormones can shift the immunological balance in favor of Tregs via differential engagement of the GR in T cells. This newly defined mechanism confers protection from autoimmunity during pregnancy and represents a potential target for future therapy.


Asunto(s)
Embarazo/inmunología , Receptores de Glucocorticoides/inmunología , Linfocitos T/inmunología , Animales , Autoinmunidad , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Tolerancia Inmunológica , Ratones Endogámicos C57BL , Progesterona/inmunología
10.
Eur J Immunol ; 48(12): 2055-2067, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30320878

RESUMEN

Donor lymphocyte infusions together with allogeneic hematopoietic stem cell transplantation are routinely used as second-line treatment for hematological malignancies. Mature T cells in the graft crucially mediate a graft versus leukemia (GvL) response, but also attack healthy tissues in the recipient leading to potentially life-threatening acute graft versus host disease. Using inducible CD28 knockout C57BL/6 mice as T-cell donors, we have now assessed whether CD28 costimulation of donor CD4+ and/ or CD8+ T cells is required for an efficient GvL effect after allogeneic T-cell transplantation into BALB/c recipients. Our results show that CD28 costimulation of donor CD8+ cytotoxic, but not CD4+ helper, T cells was dispensable for curing mice from the BCL-1 lymphoma. Therefore, donor lymphocyte infusion treated lymphoma-bearing BALB/c recipient mice showed enhanced long-term survival when receiving CD28-deficient as compared to wild-type donor CD8+ T cells together with wild-type conventional and regulatory CD4+ T cells. The same was observed when donor CD8+ and conventional and regulatory CD4+ T cells were CD28 deficient. Our data, thus, suggest that systemic CD28 blockade, for example, with the drug FR104 might also reduce acute graft versus host disease in patients after allogeneic hematopoietic stem cell transplantation, while maintaining the protective GvL response.


Asunto(s)
Antígenos CD28/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Enfermedad Injerto contra Huésped/inmunología , Efecto Injerto vs Leucemia/inmunología , Trasplante de Células Madre Hematopoyéticas , Linfoma/inmunología , Enfermedad Aguda , Animales , Antígenos CD28/genética , Linfocitos T CD4-Positivos/trasplante , Linfocitos T CD8-positivos/trasplante , Células Cultivadas , Ciclina D1/genética , Modelos Animales de Enfermedad , Humanos , Transfusión de Linfocitos , Linfoma/terapia , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Donantes de Tejidos , Trasplante Homólogo
11.
Acta Neuropathol ; 138(3): 443-456, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31030237

RESUMEN

The limited efficacy of glucocorticoids (GCs) during therapy of acute relapses in multiple sclerosis (MS) leads to long-term disability. We investigated the potential of vitamin D (VD) to enhance GC efficacy and the mechanisms underlying this VD/GC interaction. In vitro, GC receptor (GR) expression levels were quantified by ELISA and induction of T cell apoptosis served as a functional readout to assess synergistic 1,25(OH)2D3 (1,25D)/GC effects. Experimental autoimmune encephalomyelitis (MOG35-55 EAE) was induced in mice with T cell-specific GR or mTORc1 deficiency. 25(OH)D (25D) levels were determined in two independent cohorts of MS patients with stable disease or relapses either responsive or resistant to GC treatment (initial cohort: n = 110; validation cohort: n = 85). Gene expression of human CD8+ T cells was analyzed by microarray (n = 112) and correlated with 25D serum levels. In vitro, 1,25D upregulated GR protein levels, leading to increased GC-induced T cell apoptosis. 1,25D/GC combination therapy ameliorated clinical EAE course more efficiently than respective monotherapies, which was dependent on GR expression in T cells. In MS patients from two independent cohorts, 25D deficiency was associated with GC-resistant relapses. Mechanistic studies revealed that synergistic 1,25D/GC effects on apoptosis induction were mediated by the mTOR but not JNK pathway. In line, 1,25D inhibited mTORc1 activity in murine T cells, and low 25D levels in humans were associated with a reduced expression of mTORc1 inhibiting tuberous sclerosis complex 1 in CD8+ T cells. GR upregulation by 1,25D and 1,25D/GC synergism in vitro and therapeutic efficacy in vivo were abolished in animals with a T cell-specific mTORc1 deficiency. Specific inhibition of mTORc1 by everolimus increased the efficacy of GC in EAE. 1,25D augments GC-mediated effects in vitro and in vivo in a T cell-specific, GR-dependent manner via mTORc1 inhibition. These data may have implications for improvement of anti-inflammatory GC therapy.


Asunto(s)
Calcitriol/farmacología , Encefalomielitis Autoinmune Experimental/metabolismo , Glucocorticoides/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Animales , Antiinflamatorios/farmacología , Encefalomielitis Autoinmune Experimental/inmunología , Humanos , Ratones , Esclerosis Múltiple , Receptores de Glucocorticoides/efectos de los fármacos , Receptores de Glucocorticoides/metabolismo , Transducción de Señal/fisiología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
12.
J Immunol ; 199(1): 48-61, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28515280

RESUMEN

Although glucocorticoids (GCs) are a mainstay in the clinical management of asthma, the target cells that mediate their therapeutic effects are unknown. Contrary to our expectation, we found that GC receptor (GR) expression in immune cells was dispensable for successful therapy of allergic airway inflammation (AAI) with dexamethasone. Instead, GC treatment was compromised in mice expressing a defective GR in the nonhematopoietic compartment or selectively lacking the GR in airway epithelial cells. Further, we found that an intact GR dimerization interface was a prerequisite for the suppression of AAI and airway hyperresponsiveness by GCs. Our observation that the ability of dexamethasone to modulate gene expression in airway epithelial cells coincided with its potency to resolve AAI supports a crucial role for transcriptional regulation by the GR in this cell type. Taken together, we identified an unknown mode of GC action in the treatment of allergic asthma that might help to develop more specific therapies in the future.


Asunto(s)
Asma/tratamiento farmacológico , Dexametasona/farmacología , Células Epiteliales/efectos de los fármacos , Glucocorticoides/farmacología , Receptores de Glucocorticoides/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Animales , Asma/inmunología , Asma/fisiopatología , Dexametasona/uso terapéutico , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Glucocorticoides/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Ratones , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Transducción de Señal
13.
Proc Natl Acad Sci U S A ; 113(12): 3323-8, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26957602

RESUMEN

Multiple sclerosis (MS) is caused by T cells that are reactive for brain antigens. In experimental autoimmune encephalomyelitis, the animal model for MS, myelin-reactive T cells initiate the autoimmune process when entering the nervous tissue and become reactivated upon local encounter of their cognate CNS antigen. Thereby, the strength of the T-cellular reactivation process within the CNS tissue is crucial for the manifestation and the severity of the clinical disease. Recently, B cells were found to participate in the pathogenesis of CNS autoimmunity, with several diverse underlying mechanisms being under discussion. We here report that B cells play an important role in promoting the initiation process of CNS autoimmunity. Myelin-specific antibodies produced by autoreactive B cells after activation in the periphery diffused into the CNS together with the first invading pathogenic T cells. The antibodies accumulated in resident antigen-presenting phagocytes and significantly enhanced the activation of the incoming effector T cells. The ensuing strong blood-brain barrier disruption and immune cell recruitment resulted in rapid manifestation of clinical disease. Therefore, myelin oligodendrocyte glycoprotein (MOG)-specific autoantibodies can initiate disease bouts by cooperating with the autoreactive T cells in helping them to recognize their autoantigen and become efficiently reactivated within the immune-deprived nervous tissue.


Asunto(s)
Autoanticuerpos/inmunología , Enfermedades Autoinmunes/inmunología , Enfermedades del Sistema Nervioso Central/inmunología , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Diferenciación Celular , Humanos , Linfocitos T/patología
14.
Neurobiol Dis ; 102: 60-69, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28235673

RESUMEN

Laquinimod is currently being tested as a therapeutic drug in multiple sclerosis. However, its exact mechanism of action is still under investigation. Tracking of fluorescently-tagged encephalitogenic T cells during experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, revealed that laquinimod significantly reduces the invasion of pathogenic effector T cells into the CNS tissue. T-cell activation, differentiation and amplification within secondary lymphoid organs after immunization with myelin antigen, their migratory capacity and re-activation within the nervous tissue were either only mildly affected or remained unchanged. Instead, laquinimod directly impacted the functionality of the CNS vasculature. The expression of tight junction proteins p120 and ZO-1 in human brain endothelial cells was up-regulated upon laquinimod treatment, resulting in a significant increase in the transendothelial electrical resistance of confluent monolayers of brain endothelial cells. Similarly, expression of the adhesion molecule activated leukocyte cell adhesion molecule (ALCAM) and inflammatory chemokines CCL2 and IP-10 was suppressed, leading to a significant reduction in the migration of memory TH1 and TH17 lymphocytes across the blood brain barrier (BBB). Our data indicate that laquinimod exerts its therapeutic effects by tightening the BBB and limiting parenchymal invasion of effector T cells, thereby reducing CNS damage.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Fármacos Neuroprotectores/farmacología , Quinolonas/farmacología , Adulto , Animales , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/fisiología , Células Cultivadas , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Femenino , Humanos , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Ratas Endogámicas Lew , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Adulto Joven
15.
Eur J Immunol ; 46(7): 1644-55, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27122236

RESUMEN

The role of CD28-mediated costimulation in secondary CD8(+) T-cell responses remains controversial. Here, we have used two tools - blocking mouse anti-mouse CD28-specific antibodies and inducible CD28-deleting mice - to obtain definitive answers in mice infected with ovalbumin-secreting Listeria monocytogenes. We report that both blockade and global deletion of CD28 reveal its requirement for full clonal expansion and effector functions such as degranulation and IFN-γ production during the secondary immune response. In contrast, cell-intrinsic deletion of CD28 in transferred TCR-transgenic CD8(+) T cells before primary infection leads to impaired clonal expansion but an increase in cells able to express effector functions in both primary and secondary responses. We suggest that the proliferation-impaired CD8(+) T cells respond to CD28-dependent help from their environment by enhanced functional differentiation. Finally, we report that cell-intrinsic deletion of CD28 after the peak of the primary response does not affect the establishment, maintenance, or recall of long-term memory. Thus, if given sufficient time, the progeny of primed CD8(+) T cells adapt to the absence of this costimulator.


Asunto(s)
Antígenos/inmunología , Antígenos CD28/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Memoria Inmunológica , Activación de Linfocitos/inmunología , Animales , Infecciones Bacterianas/genética , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Antígenos CD28/antagonistas & inhibidores , Antígenos CD28/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Epítopos de Linfocito T/inmunología , Activación de Linfocitos/genética , Ratones , Ratones Noqueados , Ratones Transgénicos
16.
Int J Mol Sci ; 18(9)2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28837059

RESUMEN

Glucocorticoids (GC) are one of the most popular and versatile classes of drugs available to treat chronic inflammation and cancer, but side effects and resistance constrain their use. To overcome these hurdles, which are often related to the uniform tissue distribution of free GC and their short half-life in biological fluids, new delivery vehicles have been developed including PEGylated liposomes, polymeric micelles, polymer-drug conjugates, inorganic scaffolds, and hybrid nanoparticles. While each of these nanoformulations has individual drawbacks, they are often superior to free GC in many aspects including therapeutic efficacy when tested in cell culture or animal models. Successful application of nanomedicines has been demonstrated in various models of neuroinflammatory diseases, cancer, rheumatoid arthritis, and several other disorders. Moreover, investigations using human cells and first clinical trials raise the hope that the new delivery vehicles may have the potential to make GC therapies more tolerable, specific and efficient in the future.


Asunto(s)
Sistemas de Liberación de Medicamentos , Glucocorticoides/administración & dosificación , Animales , Glucocorticoides/farmacología , Glucocorticoides/uso terapéutico , Humanos , Liposomas , Micelas , Nanomedicina , Nanopartículas , Polímeros , Investigación Biomédica Traslacional
17.
Eur J Immunol ; 45(5): 1326-38, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25627579

RESUMEN

Brain-derived neurotrophic factor (BDNF) promotes neuronal survival, regeneration, and plasticity. Emerging evidence also indicates an essential role for BDNF outside the nervous system, for instance in immune cells. We therefore investigated the impact of BDNF on T cells using BDNF knockout (KO) mice and conditional KO mice lacking BDNF specifically in this lymphoid subset. In both settings, we observed diminished T-cell cellularity in peripheral lymphoid organs and an increase in CD4(+) CD44(+) memory T cells. Analysis of thymocyte development revealed diminished total thymocyte numbers, accompanied by a significant increase in CD4/CD8 double-negative (DN) thymocytes due to a partial block in the transition from the DN3 to the DN4 stage. This was neither due to increased thymocyte apoptosis nor defects in the expression of the TCR-ß chain or the pre-TCR. In contrast, pERK but not pAKT levels were diminished in DN3 BDNF-deficient thymocytes. BDNF deficiency in T cells did not result in gross deficits in peripheral acute immune responses nor in changes of the homeostatic proliferation of peripheral T cells. Taken together, our data reveal a critical autocrine and/or paracrine role of T-cell-derived BDNF in thymocyte maturation involving ERK-mediated TCR signaling pathways.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/deficiencia , Factor Neurotrófico Derivado del Encéfalo/genética , Diferenciación Celular , Femenino , Memoria Inmunológica , Tejido Linfoide/citología , Tejido Linfoide/inmunología , Tejido Linfoide/metabolismo , Linfopoyesis , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T/inmunología
18.
PLoS Pathog ; 10(2): e1003906, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24516382

RESUMEN

IL-13 driven Th2 immunity is indispensable for host protection against infection with the gastrointestinal nematode Nippostronglus brasiliensis. Disruption of CD28 mediated costimulation impairs development of adequate Th2 immunity, showing an importance for CD28 during the initiation of an immune response against this pathogen. In this study, we used global CD28⁻/⁻ mice and a recently established mouse model that allows for inducible deletion of the cd28 gene by oral administration of tamoxifen (CD28(-/lox)Cre⁺/⁻+TM) to resolve the controversy surrounding the requirement of CD28 costimulation for recall of protective memory responses against pathogenic infections. Following primary infection with N. brasiliensis, CD28⁻/⁻ mice had delayed expulsion of adult worms in the small intestine compared to wild-type C57BL/6 mice that cleared the infection by day 9 post-infection. Delayed expulsion was associated with reduced production of IL-13 and reduced serum levels of antigen specific IgG1 and total IgE. Interestingly, abrogation of CD28 costimulation in CD28(-/lox)Cre⁺/⁻ mice by oral administration of tamoxifen prior to secondary infection with N. brasiliensis resulted in impaired worm expulsion, similarly to infected CD28⁻/⁻ mice. This was associated with reduced production of the Th2 cytokines IL-13 and IL-4, diminished serum titres of antigen specific IgG1 and total IgE and a reduced CXCR5⁺ T(FH) cell population. Furthermore, total number of CD4⁺ T cells and B220⁺ B cells secreting Th1 and Th2 cytokines were significantly reduced in CD28⁻/⁻ mice and tamoxifen treated CD28(-/lox)Cre⁺/⁻ mice compared to C57BL/6 mice. Importantly, interfering with CD28 costimulatory signalling before re-infection impaired the recruitment and/or expansion of central and effector memory CD4⁺ T cells and follicular B cells to the draining lymph node of tamoxifen treated CD28(-/lox)Cre⁺/⁻ mice. Therefore, it can be concluded that CD28 costimulation is essential for conferring host protection during secondary N. brasiliensis infection.


Asunto(s)
Antígenos CD28/inmunología , Linfocitos T CD4-Positivos/inmunología , Nippostrongylus , Infecciones por Strongylida/inmunología , Animales , Antígenos CD28/metabolismo , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Strongylida/metabolismo
19.
J Pathol ; 235(4): 646-55, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25358639

RESUMEN

Glucocorticoids (GCs) are released from the adrenal gland during inflammation and help to keep immune responses at bay. Owing to their potent anti-inflammatory activity, GCs also play a key role in controlling acute graft-versus-host disease (aGvHD). Here we demonstrate that mice lacking the glucocorticoid receptor (GR) in T cells develop fulminant disease after allogeneic bone marrow transplantation. In a fully MHC-mismatched model, transfer of GR-deficient T cells resulted in severe aGvHD symptoms and strongly decreased survival times. Histopathological features were aggravated and infiltration of CD8(+) T cells into the jejunum was increased when the GR was not expressed. Furthermore, serum levels of IL-2, IFNγ, and IL-17 were elevated and the cytotoxicity of CD8(+) T cells was enhanced after transfer of GR-deficient T cells. Short-term treatment with dexamethasone reduced cytokine secretion but neither impacted disease severity nor the CTLs' cytolytic capacity. Importantly, in an aGvHD model in which disease development exclusively depends on the presence of CD8(+) T cells in the transplant, transfer of GR-deficient T cells aggravated clinical symptoms and reduced survival times as well. Taken together, our findings highlight that suppression of CD8(+) T-cell function is a crucial mechanism in the control of aGvHD by endogenous GCs.


Asunto(s)
Trasplante de Médula Ósea , Citotoxicidad Inmunológica/efectos de los fármacos , Dexametasona/farmacología , Glucocorticoides/farmacología , Enfermedad Injerto contra Huésped/prevención & control , Inmunosupresores/farmacología , Yeyuno/efectos de los fármacos , Linfocitos T Citotóxicos/efectos de los fármacos , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped/sangre , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/patología , Interferón gamma/sangre , Interleucina-17/sangre , Interleucina-2/sangre , Yeyuno/inmunología , Yeyuno/metabolismo , Yeyuno/patología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Índice de Severidad de la Enfermedad , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Linfocitos T Citotóxicos/trasplante , Factores de Tiempo , Trasplante Homólogo
20.
Glia ; 63(6): 1083-99, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25731696

RESUMEN

The putative protein tyrosine kinase (PTK) inhibitor tyrphostin AG126 has proven beneficial in various models of inflammatory disease. Yet molecular targets and cellular mechanisms remained enigmatic. We demonstrate here that AG126 treatment has beneficial effects in experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. AG126 alleviates the clinical symptoms, diminishes encephalitogenic Th17 differentiation, reduces inflammatory CNS infiltration as well as microglia activation and attenuates myelin damage. We show that AG126 directly inhibits Bruton's tyrosine kinase (BTK), a PTK associated with B cell receptor and Toll-like receptor (TLR) signaling. However, BTK inhibition cannot account for the entire activity spectrum. Effects on TLR-induced proinflammatory cytokine expression in microglia involve AG126 hydrolysis and conversion of its dinitrile side chain to malononitrile (MN). Notably, while liberated MN can subsequently mediate critical AG126 features, full protection in EAE still requires delivery of intact AG126. Its anti-inflammatory potential and especially interference with TLR signaling thus rely on a dual mechanism encompassing BTK and a novel MN-sensitive target. Both principles bear great potential for the therapeutic management of disturbed innate and adaptive immune functions.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Tirfostinos/farmacología , Agammaglobulinemia Tirosina Quinasa , Animales , Células Cultivadas , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/fisiopatología , Femenino , Hidrólisis , Factores Inmunológicos/química , Factores Inmunológicos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/fisiología , Factor 88 de Diferenciación Mieloide/metabolismo , Fármacos Neuroprotectores/química , Nitrilos/química , Nitrilos/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Bazo/citología , Bazo/efectos de los fármacos , Bazo/fisiopatología , Células Th17/efectos de los fármacos , Células Th17/patología , Células Th17/fisiología , Tirfostinos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA