Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur Respir J ; 45(5): 1258-72, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25745049

RESUMEN

In chronic obstructive pulmonary disease (COPD), epithelial changes and subepithelial fibrosis are salient features in conducting airways. Epithelial-to-mesenchymal transition (EMT) has been recently suggested in COPD, but the mechanisms and relationship to peribronchial fibrosis remain unclear. We hypothesised that de-differentiation of the COPD respiratory epithelium through EMT could participate in airway fibrosis and thereby, in airway obstruction. Surgical lung tissue and primary broncho-epithelial cultures (in air-liquid interface (ALI)) from 104 patients were assessed for EMT markers. Cell cultures were also assayed for mesenchymal features and for the role of transforming growth factor (TGF)-ß1. The bronchial epithelium from COPD patients showed increased vimentin and decreased ZO-1 and E-cadherin expression. Increased vimentin expression correlated with basement membrane thickening and airflow limitation. ALI broncho-epithelial cells from COPD patients also displayed EMT phenotype in up to 2 weeks of culture, were more spindle shaped and released more fibronectin. Targeting TGF-ß1 during ALI differentiation prevented vimentin induction and fibronectin release. In COPD, the airway epithelium displays features of de-differentiation towards mesenchymal cells, which correlate with peribronchial fibrosis and airflow limitation, and which are partly due to a TGF-ß1-driven epithelial reprogramming.


Asunto(s)
Desdiferenciación Celular , Transición Epitelial-Mesenquimal , Regulación de la Expresión Génica , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Anciano , Obstrucción de las Vías Aéreas , Antígenos CD , Bronquios/citología , Cadherinas/metabolismo , Células Epiteliales/citología , Femenino , Fibronectinas/metabolismo , Fibrosis/patología , Fibrosis/fisiopatología , Humanos , Técnicas In Vitro , Pulmón/patología , Masculino , Persona de Mediana Edad , Fenotipo , Mucosa Respiratoria/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Vimentina/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
3.
Breast Cancer Res ; 13(1): R17, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21294885

RESUMEN

INTRODUCTION: Novel adjuvant therapies are needed to prevent metastatic relapses in HER2-expressing breast cancer. Here, we tested whether trastuzumab-selected single-chain Fv (scFv) could be used to develop an anti-idiotype-based vaccine to inhibit growth of HER2-positive tumor cells in vitro and in vivo through induction of long-lasting HER-specific immunity. METHODS: BALB/c mice were immunized with anti-trastuzumab anti-idiotype (anti-Id) scFv (scFv40 and scFv69), which mimic human HER2. Their sera were assessed for the presence of HER2-specific Ab1' antibodies and for their ability to reduce viability of SK-OV-3 cells, a HER2-positive cancer cell line, in nude mice. MMTV.f.huHER2(Fo5) transgenic mice were immunized with scFv40 and scFv69 and, then, growth inhibition of spontaneous HER2-positive mammary tumors, humoral response, antibody isotype as well as splenocyte secretion of IL2 and IFN-γ were evaluated. RESULTS: Adoptively-transferred sera from BALB/c mice immunized with scFv40 and scFv69 contain anti-HER2 Ab1' antibodies that can efficiently inhibit growth of SK-OV-3 cell tumors in nude mice. Similarly, prophylactic vaccination with anti-Id scFv69 fully protects virgin or primiparous FVB-MMTV.f.huHER2(Fo5) females from developing spontaneous mammary tumors. Moreover, such vaccination elicits an anti-HER2 Ab1' immune response together with a scFv69-specific Th1 response with IL2 and IFN-γ cytokine secretion. CONCLUSIONS: Anti-trastuzumab anti-Id scFv69, used as a therapeutic or prophylactic vaccine, protects mice from developing HER2-positive mammary tumors by inducing both anti-HER2 Ab1' antibody production and an anti-HER2 Th2-dependent immune response. These results suggest that scFv69 could be used as an anti-Id-based vaccine for adjuvant therapy of patients with HER2-positive tumors to reverse immunological tolerance to HER2.


Asunto(s)
Anticuerpos Antiidiotipos/inmunología , Anticuerpos Monoclonales Humanizados/inmunología , Vacunas contra el Cáncer/inmunología , Tolerancia Inmunológica , Neoplasias Ováricas/inmunología , Receptor ErbB-2/inmunología , Anticuerpos de Cadena Única/inmunología , Animales , Anticuerpos Antiidiotipos/sangre , Células CHO , Línea Celular Tumoral , Supervivencia Celular/inmunología , Cricetinae , Femenino , Células HEK293 , Humanos , Inmunidad Humoral , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ratones Transgénicos , Neoplasias Ováricas/terapia , Células TH1/inmunología , Células Th2/inmunología , Trastuzumab
5.
Front Oncol ; 2: 158, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23133825

RESUMEN

Since the discovery of tumor-associated antigens (TAAs), researchers have tried to develop immune-based anti-cancer therapies. Thanks to their specificity, monoclonal antibodies (mAbs) offer the major advantage to induce fewer side effects than those caused by non-specific conventional treatments (e.g., chemotherapy, radiotherapy). Passive immunotherapy by means of mAbs or cytokines has proved efficacy in oncology and validated the use of immune-based agents as part of anti-cancer treatment options. The next step was to try to induce an active immune protection aiming to boost own's host immune defense against TAAs. Cancer vaccines are thus developed to specifically induce active immune protection targeting only tumor cells while preserving normal tissues from a non-specific toxicity. But, as most of TAAs are self antigens, an immune tolerance against them exists representing a barrier to effective vaccination against these oncoproteins. One promising approach to break this immune tolerance consists in the use of anti-idiotypic (anti-Id) mAbs, so called Ab2, as antigen surrogates. This vaccination strategy allows also immunization against non-proteic antigens (such as carbohydrates). In some clinical studies, anti-Id cancer vaccines indeed induced efficient humoral and/or cellular immune responses associated with clinical benefit. This review article will focus on recent achievements of anti-Id mAbs use as cancer vaccines in solid tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA