Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 24(5): 1843-1872, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29405521

RESUMEN

Central European grasslands are characterized by a wide range of different management practices in close geographical proximity. Site-specific management strategies strongly affect the biosphere-atmosphere exchange of the three greenhouse gases (GHG) carbon dioxide (CO2 ), nitrous oxide (N2 O), and methane (CH4 ). The evaluation of environmental impacts at site level is challenging, because most in situ measurements focus on the quantification of CO2 exchange, while long-term N2 O and CH4 flux measurements at ecosystem scale remain scarce. Here, we synthesized ecosystem CO2 , N2 O, and CH4 fluxes from 14 managed grassland sites, quantified by eddy covariance or chamber techniques. We found that grasslands were on average a CO2 sink (-1,783 to -91 g CO2  m-2  year-1 ), but a N2 O source (18-638 g CO2 -eq. m-2  year-1 ), and either a CH4 sink or source (-9 to 488 g CO2 -eq. m-2  year-1 ). The net GHG balance (NGB) of nine sites where measurements of all three GHGs were available was found between -2,761 and -58 g CO2 -eq. m-2  year-1 , with N2 O and CH4 emissions offsetting concurrent CO2 uptake by on average 21 ± 6% across sites. The only positive NGB was found for one site during a restoration year with ploughing. The predictive power of soil parameters for N2 O and CH4 fluxes was generally low and varied considerably within years. However, after site-specific data normalization, we identified environmental conditions that indicated enhanced GHG source/sink activity ("sweet spots") and gave a good prediction of normalized overall fluxes across sites. The application of animal slurry to grasslands increased N2 O and CH4 emissions. The N2 O-N emission factor across sites was 1.8 ± 0.5%, but varied considerably at site level among the years (0.1%-8.6%). Although grassland management led to increased N2 O and CH4 emissions, the CO2 sink strength was generally the most dominant component of the annual GHG budget.


Asunto(s)
Pradera , Gases de Efecto Invernadero , Dióxido de Carbono/análisis , Europa (Continente) , Efecto Invernadero , Metano/análisis , Modelos Teóricos , Óxido Nitroso/análisis , Suelo
2.
Sci Total Environ ; 628-629: 997-1008, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30045588

RESUMEN

Grasslands cover more than one fifth of total land area in Europe and contribute significantly to the total greenhouse gas budget. The impact of management and land use on the carbon cycle and carbon sequestration in grasslands has been well-studied, however effects on emissions of N2O and CH4 remain uncertain. Additionally, the majority of studies have focussed on management differences between intensively managed grasslands, with few results available for lightly managed grasslands and in particular grassland abandonment. We present N2O and CH4 flux measurements for an abandonment trajectory at low land-use intensity, comparing meadow (fertilized and cut), pasture (grazed) and abandoned (unmanaged since 1983) grassland sites located in the Austrian Alps. Mean growing season N2O fluxes were 0.07, 0.07 and - 0.13 nmol m-2 s-1 and CH4 fluxes were - 1.0, - 0.5 and - 1.6 nmol m-2 s-1 for the meadow, pasture and abandoned sites respectively. Variability for both gases at the abandoned site was dominated by 'hot moments', while 'hot spots' dominated at the managed meadow and pasture sites. Consideration of the diurnal cycle observed at the abandoned site, linear correlations within all data sets, and principal components analyses of the full data set revealed increased consumption of both N2O and CH4 with increasing temperature, but hardly any relationship between fluxes and soil moisture. Upscaled over a year, the observed fluxes correspond to enhanced non-CO2 greenhouse gas uptake of 172 g CO2-equiv. m-2 y-1 following abandonment. These results show that non-CO2 greenhouse gases form an important part of the total climate impact of land use change and grassland abandonment, such that abandoned grassland is a net sink for both CH4 and N2O.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Pradera , Metano/análisis , Óxido Nitroso/análisis , Austria
3.
J Geophys Res Biogeosci ; 120(3): 502-512, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27478715

RESUMEN

Soil respiration and its biotic and abiotic drivers have been an important research topic in recent years. While the bulk of these efforts has focused on the emission of CO2 from soils, the production and subsequent transport of CO2 from soil to atmosphere received far less attention. However, to understand processes underlying emissions of CO2 from terrestrial ecosystems, both processes need to be fully evaluated. In this study, we tested to what extent the transport of CO2 in a grassland site in the Austrian Alps could be modeled based on the common assumption that diffusion is the main transport mechanism for trace gases in soils. Therefore, we compared the CO2 efflux calculated from the soil CO2 concentration gradient with the CO2 efflux from chamber measurements. We used four commonly used diffusion-driven models for the flux-gradient approach. Models generally underestimated the soil chamber effluxes and their amplitudes, indicating that processes other than diffusion were responsible for the transport of CO2. We further observed that transport rates correlated well with irradiation and, below a soil moisture content of 33%, with wind speed. This suggests that mechanisms such as bulk soil air transport, due to pressure pumping or thermal expansion of soil air due to local surface heating, considerably influence soil CO2 transport at this site. Our results suggest that nondiffusive transport may be an important mechanism influencing diel and day-to-day dynamics of soil CO2 emissions, leading to a significant mismatch (10-87% depending on the model used) between the two approaches at short time scales.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA