RESUMEN
BACKGROUND: Blood neurofilament light chain (NfL) is increasingly considered as a key trial biomarker in genetic frontotemporal dementia (gFTD). We aimed to facilitate the use of NfL in gFTD multicentre trials by testing its (1) reliability across labs; (2) reliability to stratify gFTD disease stages; (3) comparability between blood matrices and (4) stability across recruiting sites. METHODS: Comparative analysis of blood NfL levels in a large gFTD cohort (GENFI) for (1)-(4), with n=344 samples (n=148 presymptomatic, n=11 converter, n=46 symptomatic subjects, with mutations in C9orf72, GRN or MAPT; and n=139 within-family controls), each measured in three different international labs by Simoa HD-1 analyzer. RESULTS: NfL revealed an excellent consistency (intraclass correlation coefficient (ICC) 0.964) and high reliability across the three labs (maximal bias (pg/mL) in Bland-Altman analysis: 1.12±1.20). High concordance of NfL across laboratories was moreover reflected by high areas under the curve for discriminating conversion stage against the (non-converting) presymptomatic stage across all three labs. Serum and plasma NfL were largely comparable (ICC 0.967). The robustness of NfL across 13 recruiting sites was demonstrated by a linear mixed effect model. CONCLUSIONS: Our results underline the suitability of blood NfL in gFTD multicentre trials, including cross-lab reliable stratification of the highly trial-relevant conversion stage, matrix comparability and cross-site robustness.
Asunto(s)
Biomarcadores , Demencia Frontotemporal , Proteínas de Neurofilamentos , Humanos , Proteínas de Neurofilamentos/sangre , Proteínas de Neurofilamentos/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/sangre , Reproducibilidad de los Resultados , Masculino , Femenino , Biomarcadores/sangre , Persona de Mediana Edad , Proteínas tau/genética , Proteínas tau/sangre , Proteína C9orf72/genética , Progranulinas/genética , Anciano , Mutación , Estudios de CohortesRESUMEN
BACKGROUND: Inflammation has been proposed as a crucial player in neurodegeneration, including Frontotemporal Dementia (FTD). A few studies on sporadic FTD lead to inconclusive results, whereas large studies on genetic FTD are lacking. The aim of this study is to determine cytokine and chemokine plasma circulating levels in a large cohort of genetic FTD, collected within the GENetic Frontotemporal dementia Initiative (GENFI). METHODS: Mesoscale technology was used to analyse levels of 30 inflammatory factors in 434 plasma samples, including 94 Symptomatic Mutation carriers [(SMC); 15 with mutations in Microtubule Associated Protein Tau (MAPT) 34 in Progranulin (GRN) and 45 in Chromosome 9 Open Reading Frame (C9ORF)72], 168 Presymptomatic Mutation Carriers (PMC; 34 MAPT, 70 GRN and 64 C9ORF72) and 173 Non-carrier Controls (NC)]. RESULTS: The following cytokines were significantly upregulated (P<0.05) in MAPT and GRN SMC versus NC: Tumor Necrosis Factor (TNF)α, Interleukin (IL)-7, IL-15, IL-16, IL-17A. Moreover, only in GRN SMC, additional factors were upregulated, including: IL-1ß, IL-6, IL-10, IL-12/IL-23p40, eotaxin, eotaxin-3, Interferon γ-induced Protein (IP-10), Monocyte Chemotactic Protein (MCP)4. On the contrary, IL-1α levels were decreased in SMC compared with NC. Significantly decreased levels of this cytokine were also found in PMC, independent of the type of mutation. In SMC, no correlations between disease duration and cytokine and chemokine levels were found. Considering NfL and GFAP levels, as expected, significant increases were observed in SMC as compared to NC. These differences in mean values remain significant even when stratifying symptomatic patients by the mutated gene (P<0.0001). Considering instead the levels of NfL, GFAP, and the altered inflammatory molecules, no significant correlations emerged. CONCLUSION: We showed that inflammatory proteins are upregulated in MAPT and GRN SMC, with some specific factors altered in GRN only, whereas no changes were seen in C9ORF72 carriers. Notably, only IL-1α levels were decreased in both SMC and PMC, independent of the type of causal mutation, suggesting common modifications occurring in the preclinical phase of the disease.
Asunto(s)
Citocinas , Demencia Frontotemporal , Inflamación , Mutación , Progranulinas , Proteínas tau , Humanos , Demencia Frontotemporal/genética , Demencia Frontotemporal/sangre , Femenino , Masculino , Persona de Mediana Edad , Progranulinas/genética , Progranulinas/sangre , Citocinas/sangre , Citocinas/genética , Proteínas tau/sangre , Proteínas tau/genética , Anciano , Inflamación/genética , Inflamación/sangre , Proteína C9orf72/genética , Quimiocinas/sangre , Quimiocinas/genética , Estudios de Cohortes , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/sangre , HeterocigotoRESUMEN
INTRODUCTION: For over 25 years, cholinesterase inhibitors (ChEIs) have been the main symptomatic treatment for Alzheimer's disease (AD). Several meta-analyses have supported their effectiveness in various neurocognitive, functional, and behavioral aspects of amnestic AD. Over 86% of cases of the logopenic variant of primary progressive aphasia (lvPPA), also named language variant AD, are caused by a similar pathologic process than AD, yet no study has examined the efficacy of ChEIs in this AD variant. We aimed to explore the efficacy of ChEIs in the treatment of lvPPA by comparing their evolution on the MMSE, and other functional and behavioral parameters, to that of treated amnestic AD patients. METHODS: A retrospective chart review was performed in 45 patients with lvPPA and 52 patients with amnestic AD. Both groups were similar in terms of age, level of education, and onset of symptoms. Drug history and MMSE scores, as well as functional (activities of daily living [ADLs] and instrumental activities of daily living [IADLs]), neurocognitive and neuropsychiatric symptoms were collected on several time points before and after the introduction of ChEIs. Data were analyzed using ANOVA and a generalized linear mixed model. RESULTS: Patients with lvPPA showed a similar trajectory of decline than amnestic AD patients on serial MMSEs up to 12-24 months after the introduction of ChEIs. There was a significant impact on ADLs but not IADLs and neuropsychiatric symptoms remained stable over time. CONCLUSION: This study provides preliminary evidence for efficacy of ChEIs in patients with lvPPA and suggests similar benefits to those seen in amnestic AD patients, hence reassuring patients and their physicians.
RESUMEN
While frontotemporal dementia has been considered a neurodegenerative disease that starts in mid-life or later, it is now clearly established that cortical and subcortical volume loss is observed more than a decade prior to symptom onset and progresses with ageing. To test the hypothesis that genetic mutations causing frontotemporal dementia have neurodevelopmental consequences, we examined the youngest adults in the GENFI cohort of pre-symptomatic frontotemporal dementia mutation carriers who are between 19 and 30 years of age. Structural brain differences and improved performance on some cognitive tests were found for MAPT and GRN mutation carriers relative to familial non-carriers, while smaller volumes were observed in C9orf72 repeat expansion carriers at a mean age of 26 years. The detection of such early differences supports potential advantageous neurodevelopmental consequences of some frontotemporal dementia-causing genetic mutations. These results have implications for the design of therapeutic interventions for frontotemporal dementia. Future studies at younger ages are needed to identify specific early pathophysiologic or compensatory processes that occur during the neurodevelopmental period.
Asunto(s)
Demencia Frontotemporal , Enfermedades Neurodegenerativas , Enfermedad de Pick , Humanos , Adulto Joven , Adulto , Demencia Frontotemporal/genética , Progranulinas/genética , Encéfalo , Mutación , Proteína C9orf72/genética , Proteínas tau/genéticaRESUMEN
Connections among brain regions allow pathological perturbations to spread from a single source region to multiple regions. Patterns of neurodegeneration in multiple diseases, including behavioural variant of frontotemporal dementia (bvFTD), resemble the large-scale functional systems, but how bvFTD-related atrophy patterns relate to structural network organization remains unknown. Here we investigate whether neurodegeneration patterns in sporadic and genetic bvFTD are conditioned by connectome architecture. Regional atrophy patterns were estimated in both genetic bvFTD (75 patients, 247 controls) and sporadic bvFTD (70 patients, 123 controls). First, we identified distributed atrophy patterns in bvFTD, mainly targeting areas associated with the limbic intrinsic network and insular cytoarchitectonic class. Regional atrophy was significantly correlated with atrophy of structurally- and functionally-connected neighbours, demonstrating that network structure shapes atrophy patterns. The anterior insula was identified as the predominant group epicentre of brain atrophy using data-driven and simulation-based methods, with some secondary regions in frontal ventromedial and antero-medial temporal areas. We found that FTD-related genes, namely C9orf72 and TARDBP, confer local transcriptomic vulnerability to the disease, modulating the propagation of pathology through the connectome. Collectively, our results demonstrate that atrophy patterns in sporadic and genetic bvFTD are jointly shaped by global connectome architecture and local transcriptomic vulnerability, providing an explanation as to how heterogenous pathological entities can lead to the same clinical syndrome.
Asunto(s)
Conectoma , Demencia Frontotemporal , Enfermedad de Pick , Humanos , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Transcriptoma , Encéfalo/patología , Enfermedad de Pick/patología , Atrofia/patología , Imagen por Resonancia Magnética , Pruebas NeuropsicológicasRESUMEN
BACKGROUND: Although episodic memory is the primary concern in individuals with mild cognitive impairment (MCI), other cognitive functions may also be affected, including language. Language impairment in individuals with MCI has been attributed primarily to the breakdown of semantic representations, difficulties in accessing semantic information, and the weakening of executive functions. However, in most prior studies of word processing in individuals with MCI, researchers have used measures focused on noun production. OBJECTIVE: To investigate how verb production tasks might aid in detecting cognitive impairment in individuals with MCI. METHODS: We compared the performance of 45 individuals with MCI and 45 healthy controls on action naming and action fluency tasks. RESULTS: In the action naming task, the performance of participants with MCI was significantly impaired compared to healthy controls in terms of total score, the number of semantic errors produced, and the use of generic terms. In the action fluency task, participants with MCI produced significantly fewer verbs, fewer clusters, and fewer switches than healthy controls. CONCLUSION: The results of our study emphasize the utility of verb production tasks in the identification of cognitive impairment in individuals with MCI and provide evidence of the importance of including action naming and action fluency tasks in the assessment of individuals with MCI.
RESUMEN
INTRODUCTION: Cerebral small vessel disease (SVD) and amyloid beta (Aß) pathology frequently co-exist. The impact of concurrent pathology on the pattern of hippocampal atrophy, a key substrate of memory impacted early and extensively in dementia, remains poorly understood. METHODS: In a unique cohort of mixed Alzheimer's disease and moderate-severe SVD, we examined whether total and regional neuroimaging measures of SVD, white matter hyperintensities (WMH), and Aß, as assessed by 18F-AV45 positron emission tomography, exert additive or synergistic effects on hippocampal volume and shape. RESULTS: Frontal WMH, occipital WMH, and Aß were independently associated with smaller hippocampal volume. Frontal WMH had a spatially distinct impact on hippocampal shape relative to Aß. In contrast, hippocampal shape alterations associated with occipital WMH spatially overlapped with Aß-vulnerable subregions. DISCUSSION: Hippocampal degeneration is differentially sensitive to SVD and Aß pathology. The pattern of hippocampal atrophy could serve as a disease-specific biomarker, and thus guide clinical diagnosis and individualized treatment strategies for mixed dementia.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Enfermedades de los Pequeños Vasos Cerebrales , Hipocampo , Tomografía de Emisión de Positrones , Humanos , Hipocampo/patología , Hipocampo/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/patología , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Masculino , Anciano , Femenino , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Atrofia/patología , Imagen por Resonancia Magnética , Anciano de 80 o más Años , Neuroimagen , Estudios de CohortesRESUMEN
INTRODUCTION: Genetic mutation carriers of frontotemporal dementia can remain cognitively well despite neurodegeneration. A better understanding of brain structural, perfusion, and functional patterns in the pre-symptomatic stage could inform accurate staging and potential mechanisms. METHODS: We included 207 pre-symptomatic genetic mutation carriers and 188 relatives without mutations. The gray matter volume, cerebral perfusion, and resting-state functional network maps were co-analyzed using linked independent component analysis (LICA). Multiple regression analysis was used to investigate the relationship of LICA components to genetic status and cognition. RESULTS: Pre-symptomatic mutation carriers showed an age-related decrease in the left frontoparietal network integrity, while non-carriers did not. Executive functions of mutation carriers became dependent on the left frontoparietal network integrity in older age. DISCUSSION: The frontoparietal network integrity of pre-symptomatic mutation carriers showed a distinctive relationship to age and cognition compared to non-carriers, suggesting a contribution of the network integrity to brain resilience. HIGHLIGHTS: A multimodal analysis of structure, perfusion, and functional networks. The frontoparietal network integrity decreases with age in pre-symptomatic carriers only. Executive functions of pre-symptomatic carriers dissociated from non-carriers.
RESUMEN
INTRODUCTION: Effective longitudinal biomarkers that track disease progression are needed to characterize the presymptomatic phase of genetic frontotemporal dementia (FTD). We investigate the utility of cerebral perfusion as one such biomarker in presymptomatic FTD mutation carriers. METHODS: We investigated longitudinal profiles of cerebral perfusion using arterial spin labeling magnetic resonance imaging in 42 C9orf72, 70 GRN, and 31 MAPT presymptomatic carriers and 158 non-carrier controls. Linear mixed effects models assessed perfusion up to 5 years after baseline assessment. RESULTS: Perfusion decline was evident in all three presymptomatic groups in global gray matter. Each group also featured its own regional pattern of hypoperfusion over time, with the left thalamus common to all groups. Frontal lobe regions featured lower perfusion in those who symptomatically converted versus asymptomatic carriers past their expected age of disease onset. DISCUSSION: Cerebral perfusion is a potential biomarker for assessing genetic FTD and its genetic subgroups prior to symptom onset. HIGHLIGHTS: Gray matter perfusion declines in at-risk genetic frontotemporal dementia (FTD). Regional perfusion decline differs between at-risk genetic FTD subgroups . Hypoperfusion in the left thalamus is common across all presymptomatic groups. Converters exhibit greater right frontal hypoperfusion than non-converters past their expected conversion date. Cerebral hypoperfusion is a potential early biomarker of genetic FTD.
Asunto(s)
Proteína C9orf72 , Circulación Cerebrovascular , Demencia Frontotemporal , Imagen por Resonancia Magnética , Proteínas tau , Humanos , Demencia Frontotemporal/genética , Demencia Frontotemporal/fisiopatología , Demencia Frontotemporal/diagnóstico por imagen , Femenino , Masculino , Persona de Mediana Edad , Estudios Longitudinales , Circulación Cerebrovascular/fisiología , Circulación Cerebrovascular/genética , Proteína C9orf72/genética , Proteínas tau/genética , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Progranulinas/genética , Biomarcadores , Progresión de la Enfermedad , Encéfalo/diagnóstico por imagen , Heterocigoto , Mutación , Anciano , Marcadores de Spin , AdultoRESUMEN
INTRODUCTION: Although frontotemporal dementia (FTD) with right anterior temporal lobe (RATL) predominance has been recognized, a uniform description of the syndrome is still missing. This multicenter study aims to establish a cohesive clinical phenotype. METHODS: Retrospective clinical data from 18 centers across 12 countries yielded 360 FTD patients with predominant RATL atrophy through initial neuroimaging assessments. RESULTS: Common symptoms included mental rigidity/preoccupations (78%), disinhibition/socially inappropriate behavior (74%), naming/word-finding difficulties (70%), memory deficits (67%), apathy (65%), loss of empathy (65%), and face-recognition deficits (60%). Real-life examples unveiled impairments regarding landmarks, smells, sounds, tastes, and bodily sensations (74%). Cognitive test scores indicated deficits in emotion, people, social interactions, and visual semantics however, lacked objective assessments for mental rigidity and preoccupations. DISCUSSION: This study cumulates the largest RATL cohort unveiling unique RATL symptoms subdued in prior diagnostic guidelines. Our novel approach, combining real-life examples with cognitive tests, offers clinicians a comprehensive toolkit for managing these patients. HIGHLIGHTS: This project is the first international collaboration and largest reported cohort. Further efforts are warranted for precise nomenclature reflecting neural mechanisms. Our results will serve as a clinical guideline for early and accurate diagnoses.
Asunto(s)
Demencia Frontotemporal , Lóbulo Temporal , Humanos , Masculino , Demencia Frontotemporal/diagnóstico , Estudios Retrospectivos , Femenino , Lóbulo Temporal/patología , Lóbulo Temporal/diagnóstico por imagen , Anciano , Persona de Mediana Edad , Pruebas Neuropsicológicas/estadística & datos numéricos , Atrofia/patologíaRESUMEN
BACKGROUND: Neurotransmitters deficits in Frontotemporal Dementia (FTD) are still poorly understood. Better knowledge of neurotransmitters impairment, especially in prodromal disease stages, might tailor symptomatic treatment approaches. METHODS: In the present study, we applied JuSpace toolbox, which allowed for cross-modal correlation of Magnetic Resonance Imaging (MRI)-based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, GABAergic and glutamatergic neurotransmission. We included 392 mutation carriers (157 GRN, 164 C9orf72, 71 MAPT), together with 276 non-carrier cognitively healthy controls (HC). We tested if the spatial patterns of grey matter volume (GMV) alterations in mutation carriers (relative to HC) are correlated with specific neurotransmitter systems in prodromal (CDR® plus NACC FTLD = 0.5) and in symptomatic (CDR® plus NACC FTLD≥1) FTD. RESULTS: In prodromal stages of C9orf72 disease, voxel-based brain changes were significantly associated with spatial distribution of dopamine and acetylcholine pathways; in prodromal MAPT disease with dopamine and serotonin pathways, while in prodromal GRN disease no significant findings were reported (p < 0.05, Family Wise Error corrected). In symptomatic FTD, a widespread involvement of dopamine, serotonin, glutamate and acetylcholine pathways across all genetic subtypes was found. Social cognition scores, loss of empathy and poor response to emotional cues were found to correlate with the strength of GMV colocalization of dopamine and serotonin pathways (all p < 0.01). CONCLUSIONS: This study, indirectly assessing neurotransmitter deficits in monogenic FTD, provides novel insight into disease mechanisms and might suggest potential therapeutic targets to counteract disease-related symptoms.
Asunto(s)
Demencia Frontotemporal , Enfermedad de Pick , Humanos , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Proteína C9orf72/genética , Acetilcolina , Dopamina , Serotonina , Mutación , Imagen por Resonancia Magnética/métodos , Proteínas tau/genéticaRESUMEN
Recent studies have reported early cerebellar and subcortical impact in the disease progression of genetic frontotemporal dementia (FTD) due to microtubule-associated protein tau (MAPT), progranulin (GRN) and chromosome 9 open reading frame 72 (C9orf72). However, the cerebello-subcortical circuitry in FTD has been understudied despite its essential role in cognition and behaviors related to FTD symptomatology. The present study aims to investigate the association between cerebellar and subcortical atrophy, and neuropsychiatric symptoms across genetic mutations. Our study included 983 participants from the Genetic Frontotemporal dementia Initiative including mutation carriers and noncarrier first-degree relatives of known symptomatic carriers. Voxel-wise analysis of the thalamus, striatum, globus pallidus, amygdala, and the cerebellum was performed, and partial least squares analyses (PLS) were used to link morphometry and behavior. In presymptomatic C9orf72 expansion carriers, thalamic atrophy was found compared to noncarriers, suggesting the importance of this structure in FTD prodromes. PLS analyses demonstrated that the cerebello-subcortical circuitry is related to neuropsychiatric symptoms, with significant overlap in brain/behavior patterns, but also specificity for each genetic mutation group. The largest differences were in the cerebellar atrophy (larger extent in C9orf72 expansion group) and more prominent amygdalar volume reduction in the MAPT group. Brain scores in the C9orf72 expansion carriers and MAPT carriers demonstrated covariation patterns concordant with atrophy patterns detectable up to 20 years before expected symptom onset. Overall, these results demonstrated the important role of the subcortical structures in genetic FTD symptom expression, particularly the cerebellum in C9orf72 and the amygdala in MAPT carriers.
Asunto(s)
Demencia Frontotemporal , Humanos , Demencia Frontotemporal/genética , Proteína C9orf72/genética , Imagen por Resonancia Magnética , Cerebelo , AtrofiaRESUMEN
OBJECTIVE: Although the presymptomatic stages of frontotemporal dementia (FTD) provide a unique chance to delay or even prevent neurodegeneration by early intervention, they remain poorly defined. Leveraging a large multicenter cohort of genetic FTD mutation carriers, we provide a biomarker-based stratification and biomarker cascade of the likely most treatment-relevant stage within the presymptomatic phase: the conversion stage. METHODS: We longitudinally assessed serum levels of neurofilament light (NfL) and phosphorylated neurofilament heavy (pNfH) in the Genetic FTD Initiative (GENFI) cohort (n = 444), using single-molecule array technique. Subjects comprised 91 symptomatic and 179 presymptomatic subjects with mutations in the FTD genes C9orf72, GRN, or MAPT, and 174 mutation-negative within-family controls. RESULTS: In a biomarker cascade, NfL increase preceded the hypothetical clinical onset by 15 years and concurred with brain atrophy onset, whereas pNfH increase started close to clinical onset. The conversion stage was marked by increased NfL, but still normal pNfH levels, while both were increased at the symptomatic stage. Intra-individual change rates were increased for NfL at the conversion stage and for pNfH at the symptomatic stage, highlighting their respective potential as stage-dependent dynamic biomarkers within the biomarker cascade. Increased NfL levels and NfL change rates allowed identification of presymptomatic subjects converting to symptomatic disease and capture of proximity-to-onset. We estimate stage-dependent sample sizes for trials aiming to decrease neurofilament levels or change rates. INTERPRETATION: Blood NfL and pNfH provide dynamic stage-dependent stratification and, potentially, treatment response biomarkers in presymptomatic FTD, allowing demarcation of the conversion stage. The proposed biomarker cascade might pave the way towards a biomarker-based precision medicine approach to genetic FTD. ANN NEUROL 2022;91:33-47.
Asunto(s)
Biomarcadores/sangre , Demencia Frontotemporal/sangre , Proteínas de Neurofilamentos/sangre , Anciano , Estudios de Cohortes , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana EdadRESUMEN
BACKGROUND: Current clinical rating scales in frontotemporal dementia (FTD) often do not incorporate neuropsychiatric features and may therefore inadequately measure disease stage. METHODS: 832 participants from the Genetic FTD Initiative (GENFI) were recruited: 522 mutation carriers and 310 mutation-negative controls. The standardised GENFI clinical questionnaire assessed the frequency and severity of 14 neuropsychiatric symptoms: visual, auditory, and tactile hallucinations, delusions, depression, anxiety, irritability/lability, agitation/aggression, euphoria/elation, aberrant motor behaviour, hypersexuality, hyperreligiosity, impaired sleep, and altered sense of humour. A principal component analysis (PCA) was performed to identify key groupings of neuropsychiatric and behavioural items in order to create a new neuropsychiatric module that could be used as an addition to the Clinical Dementia Rating (CDR) plus National Alzheimer's Coordinating Center Behaviour and Language Domains (NACC FTLD) rating scale. RESULTS: Overall, 46.4% of mutation carriers had neuropsychiatric symptoms (51.6% C9orf72, 40.8% GRN, 46.6% MAPT) compared with 24.5% of controls. Anxiety and depression were the most common in all genetic groups but fluctuated longitudinally and loaded separately in the PCA. Hallucinations and delusions loaded together, with the remaining neuropsychiatric symptoms loading with the core behavioural features of FTD. These results suggest using a single 'psychosis' neuropsychiatric module consisting of hallucinations and delusions. Adding this to the CDR plus NACC FTLD, called the CDR plus NACC FTLD-N, leads to a number of participants being scored more severely, including those who were previously considered asymptomatic now being scored as prodromal. CONCLUSIONS: Neuropsychiatric symptoms occur in mutation carriers at all disease stages across all three genetic groups. However, only psychosis features provided additional staging benefit to the CDR plus NACC FTLD. Inclusion of these features brings us closer to optimising the rating scale for use in trials.
Asunto(s)
Demencia Frontotemporal , Trastornos Psicóticos , Humanos , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/genética , Alucinaciones/genética , Pruebas de Estado Mental y Demencia , AnsiedadRESUMEN
Tau is one of several proteins associated with frontotemporal dementia. While knowing which protein is causing a patient's disease is crucial, no biomarker currently exists for identifying tau in vivo in frontotemporal dementia. The objective of this study was to investigate the potential for the promising 18F-MK-6240 PET tracer to bind to tau in vivo in genetic frontotemporal dementia. We enrolled subjects with genetic frontotemporal dementia, who constitute an ideal population for testing because their pathology is already known based on their mutation. Ten participants (three with symptomatic P301L and R406W MAPT mutations expected to show tau binding, three with presymptomatic MAPT mutations and four with non-tau mutations who acted as disease controls) underwent clinical characterization, tau-PET scanning with 18F-MK-6240, amyloid-PET imaging with 18F-NAV-4694 to rule out confounding Alzheimer's pathology, and high-resolution structural MRI. Tau-PET scans of all three symptomatic MAPT carriers demonstrated at least mild 18F-MK-6240 binding in expected regions, with particularly strong binding in a subject with an R406W MAPT mutation (known to be associated with Alzheimer's like neurofibrillary tangles). Two asymptomatic MAPT carriers estimated to be 5 years from disease onset both showed modest 18F-MK-6240 binding, while one â¼30 years from disease onset did not exhibit any binding. Additionally, four individuals with symptomatic frontotemporal dementia caused by a non-tau mutation were scanned (two C9orf72; one GRN; one VCP): 18F-MK-6240 scans were negative for three subjects, while one advanced C9orf72 case showed minimal regionally non-specific binding. All 10 amyloid-PET scans were negative. Furthermore, a general linear model contrasting genetic frontotemporal dementia subjects to a set of 83 age-matched controls showed significant binding only in the MAPT carriers in selected frontal, temporal and subcortical regions. In summary, our findings demonstrate mild but significant binding of MK-6240 in amyloid-negative P301L and R406W MAPT mutation subjects, with higher standardized uptake value ratio in the R406W mutation associated with the presence of NFTs, and little non-specific binding. These results highlight that a positive 18F-MK-6240 tau-PET does not necessarily imply a diagnosis of Alzheimer's disease and point towards a potential use for 18F-MK-6240 as a biomarker in certain tauopathies beyond Alzheimer's, although further patient recruitment and autopsy studies will be necessary to determine clinical applicability.
Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Enfermedad de Alzheimer/patología , Proteína C9orf72/genética , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Humanos , Isoquinolinas , Mutación , Ovillos Neurofibrilares/patología , Proteínas tau/genética , Proteínas tau/metabolismoRESUMEN
Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal dementia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection ('converters'). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80-0.89) and 0.90 (0.86-0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75-0.95). Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model's ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions.
Asunto(s)
Demencia Frontotemporal , Biomarcadores , Proteína C9orf72/genética , Complemento C1q , Estudios Transversales , Progresión de la Enfermedad , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/genética , Proteína Ácida Fibrilar de la Glía , Humanos , Estudios Longitudinales , Mutación , Proteínas tau/genéticaRESUMEN
We compared entorhinal cortex atrophy (ERICA) score vs. medial temporal atrophy (MTA) score's ability to predict conversion from amnestic mild cognitive impairment (aMCI) to Alzheimer's disease (AD) using magnetic resonance imaging (MRI). We hypothesized that ERICA would show higher specificity. Data from 61 aMCI patients were analyzed. Positive ERICA was associated with AD conversion with a sensitivity of 56% (95% CI: 30-80%) and a specificity of 78% (63-89%) vs. 69% (41-89%) SE and 60% (44-74%) SP for the MTA. Results suggest that ERICA is superior to MTA in predicting conversion from aMCI to AD in a small sample of participants.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/complicaciones , Corteza Entorrinal/patología , Disfunción Cognitiva/psicología , Imagen por Resonancia Magnética/métodos , Atrofia/patología , Pruebas NeuropsicológicasRESUMEN
INTRODUCTION: We tested whether changes in functional networks predict cognitive decline and conversion from the presymptomatic prodrome to symptomatic disease in familial frontotemporal dementia (FTD). METHODS: For hypothesis generation, 36 participants with behavioral variant FTD (bvFTD) and 34 controls were recruited from one site. For hypothesis testing, we studied 198 symptomatic FTD mutation carriers, 341 presymptomatic mutation carriers, and 329 family members without mutations. We compared functional network dynamics between groups, with clinical severity and with longitudinal clinical progression. RESULTS: We identified a characteristic pattern of dynamic network changes in FTD, which correlated with neuropsychological impairment. Among presymptomatic mutation carriers, this pattern of network dynamics was found to a greater extent in those who subsequently converted to the symptomatic phase. Baseline network dynamic changes predicted future cognitive decline in symptomatic participants and older presymptomatic participants. DISCUSSION: Dynamic network abnormalities in FTD predict cognitive decline and symptomatic conversion. HIGHLIGHTS: We investigated brain network predictors of dementia symptom onset Frontotemporal dementia results in characteristic dynamic network patterns Alterations in network dynamics are associated with neuropsychological impairment Network dynamic changes predict symptomatic conversion in presymptomatic carriers Network dynamic changes are associated with longitudinal cognitive decline.
Asunto(s)
Disfunción Cognitiva , Demencia Frontotemporal , Humanos , Demencia Frontotemporal/diagnóstico , Mutación/genética , Encéfalo , Disfunción Cognitiva/genética , Imagen por Resonancia MagnéticaRESUMEN
It remains unclear to what extent cerebrovascular burden relates to amyloid beta (Aß) deposition, neurodegeneration, and cognitive dysfunction in mixed disease populations with small vessel disease and Alzheimer's disease (AD) pathology. In 120 subjects, we investigated the association of vascular burden (white matter hyperintensity [WMH] volumes) with cognition. Using mediation analyses, we tested the indirect effects of WMH on cognition via Aß deposition (18 F-AV45 positron emission tomography [PET]) and neurodegeneration (cortical thickness or 18 F fluorodeoxyglucose PET) in AD signature regions. We observed that increased total WMH volume was associated with poorer performance in all tested cognitive domains, with the strongest effects observed for semantic fluency. These relationships were mediated mainly via cortical thinning, particularly of the temporal lobe, and to a lesser extent serially mediated via Aß and cortical thinning of AD signature regions. WMH volumes differentially impacted cognition depending on lobar location and Aß status. In summary, our study suggests mainly an amyloid-independent pathway in which vascular burden affects cognitive function via localized neurodegeneration. HIGHLIGHTS: Alzheimer's disease often co-exists with vascular pathology. We studied a unique cohort enriched for high white matter hyperintensities (WMH). High WMH related to cognitive impairment of semantic fluency and executive function. This relationship was mediated via temporo-parietal atrophy rather than metabolism. This relationship was, to lesser extent, serially mediated via amyloid beta and atrophy.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Sustancia Blanca , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Adelgazamiento de la Corteza Cerebral/patología , Imagen por Resonancia Magnética , Cognición , Disfunción Cognitiva/metabolismo , Tomografía de Emisión de Positrones , Amiloide/metabolismo , Atrofia/patología , Sustancia Blanca/patologíaRESUMEN
BACKGROUND: The PAL is a career-completed assessment that indexes cognitive functional ability to inform individualised support. As hearing and vision loss are prevalent, we assessed the PAL for potential bias with hearing or vision impairment. METHODS: We collected PAL responses for 333 adults aged over 60 years in the UK, France, Canada, Greece and Cyprus. All participants had normal cognition based on self-reported status and normal range scores on a cognitive screening test. Using a Kruskal-Wallis test, we compared PAL item response distributions for people with assessed hearing or vision loss compared to those with normal sensory function. RESULTS: There were no differences in response distributions between hearing or vision impaired groups versus those with normal sensory function on any PAL item. CONCLUSION: The PAL reliably indexes cognitive functional ability and may be used to inform support tailored to individual cognitive level amongst older adults with prevalent hearing and vision impairments.