Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 567(7746): 49-55, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30814735

RESUMEN

The colonic epithelium facilitates host-microorganism interactions to control mucosal immunity, coordinate nutrient recycling and form a mucus barrier. Breakdown of the epithelial barrier underpins inflammatory bowel disease (IBD). However, the specific contributions of each epithelial-cell subtype to this process are unknown. Here we profile single colonic epithelial cells from patients with IBD and unaffected controls. We identify previously unknown cellular subtypes, including gradients of progenitor cells, colonocytes and goblet cells within intestinal crypts. At the top of the crypts, we find a previously unknown absorptive cell, expressing the proton channel OTOP2 and the satiety peptide uroguanylin, that senses pH and is dysregulated in inflammation and cancer. In IBD, we observe a positional remodelling of goblet cells that coincides with downregulation of WFDC2-an antiprotease molecule that we find to be expressed by goblet cells and that inhibits bacterial growth. In vivo, WFDC2 preserves the integrity of tight junctions between epithelial cells and prevents invasion by commensal bacteria and mucosal inflammation. We delineate markers and transcriptional states, identify a colonic epithelial cell and uncover fundamental determinants of barrier breakdown in IBD.


Asunto(s)
Colon/citología , Colon/patología , Células Epiteliales/clasificación , Células Epiteliales/citología , Salud , Enfermedades Inflamatorias del Intestino/patología , Canales Iónicos/metabolismo , Animales , Biomarcadores/análisis , Colitis Ulcerosa/genética , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/patología , Colon/microbiología , Células Epiteliales/microbiología , Células Epiteliales/patología , Predisposición Genética a la Enfermedad/genética , Células Caliciformes/citología , Células Caliciformes/metabolismo , Células Caliciformes/patología , Humanos , Concentración de Iones de Hidrógeno , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/microbiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Masculino , Ratones , Péptidos Natriuréticos/metabolismo , Proteínas/metabolismo , Análisis de la Célula Individual , Células Madre/citología , Células Madre/metabolismo , Células Madre/patología , Uniones Estrechas/metabolismo , Transcripción Genética , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAP
2.
Anal Chem ; 95(2): 730-738, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36574961

RESUMEN

The mechanisms by which angiotensin II type 1 receptor is distributed and the diffusional pattern in the plasma membrane (PM) remain unclear, despite their crucial role in cardiovascular homeostasis. In this work, we obtained quantitative information of angiotensin II type 1 receptor (AT1R) lateral dynamics as well as changes in the diffusion properties after stimulation with ligands in living cells using photoactivated localization microscopy (PALM) combined with image spatial-temporal correlation analysis. To study the organization of the receptor at the nanoscale, expansion microscopy (ExM) combined with PALM was performed. This study revealed that AT1R lateral diffusion increased after binding to angiotensin II (Ang II) and the receptor diffusion was transiently confined in the PM. In addition, ExM revealed that AT1R formed nanoclusters at the PM and the cluster size significantly decreased after Ang II treatment. Taking these results together suggest that Ang II binding and activation cause reorganization and changes in the dynamics of AT1R at the PM.


Asunto(s)
Angiotensina II , Receptor de Angiotensina Tipo 1 , Receptor de Angiotensina Tipo 1/metabolismo , Angiotensina II/farmacología , Angiotensina II/metabolismo , Microscopía , Membrana Celular/metabolismo
3.
Chembiochem ; 22(4): 686-693, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33049107

RESUMEN

Expansion microscopy (ExM) has been successfully used to improve the spatial resolution when imaging tissues by optical microscopy. In ExM, proteins of a fixed sample are crosslinked to a swellable acrylamide gel, which expands when incubated in water. Therefore, ExM allows enlarged subcellular structures to be resolved that would otherwise be hidden to standard confocal microscopy. Herein, we aim to validate ExM for the study of peroxisomes, mitochondria, nuclei and the plasma membrane. Upon comparison of the expansion factors of these cellular compartments in HEK293 cells within the same gel, we found significant differences, of a factor of above 2, in expansion factors. For peroxisomes, the expansion factor differed even between peroxisomal membrane and matrix marker; this underlines the need for a thorough validation of expansion factors of this powerful technique. We further give an overview of possible quantification methods for the determination of expansion factors of intracellular organelles, and we highlight some potentials and challenges.


Asunto(s)
Membrana Celular/ultraestructura , Núcleo Celular/ultraestructura , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Mitocondrias/ultraestructura , Imagen Molecular/métodos , Peroxisomas/ultraestructura , Células HEK293 , Humanos
4.
Chemistry ; 26(65): 14844-14851, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32761643

RESUMEN

This contribution describes the excited-state properties of an Osmium-complex when taken up into human cells. The complex 1 [Os(bpy)2 (IP-4T)](PF6 )2 with bpy=2,2'-bipyridine and IP-4T=2-{5'-[3',4'-diethyl-(2,2'-bithien-5-yl)]-3,4-diethyl-2,2'-bithiophene}imidazo[4,5-f][1,10]phenanthroline) can be discussed as a candidate for photodynamic therapy in the biological red/NIR window. The complex is taken up by MCF7 cells and localizes rather homogeneously within in the cytoplasm. To detail the sub-ns photophysics of 1, comparative transient absorption measurements were carried out in different solvents to derive a model of the photoinduced processes. Key to rationalize the excited-state relaxation is a long-lived 3 ILCT state associated with the oligothiophene chain. This model was then tested with the complex internalized into MCF7 cells, since the intracellular environment has long been suspected to take big influence on the excited state properties. In our study of 1 in cells, we were able to show that, though the overall model remained the same, the excited-state dynamics are affected strongly by the intracellular environment. Our study represents the first in depth correlation towards ex-vivo and in vivo ultrafast spectroscopy for a possible photodrug.

5.
Nat Commun ; 13(1): 941, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177595

RESUMEN

During development, pseudostratified epithelia undergo large scale morphogenetic events associated with increased mechanical stress. Using a variety of genetic and imaging approaches, we uncover that in the mouse E6.5 epiblast, where apical tension is highest, ASPP2 safeguards tissue integrity. It achieves this by preventing the most apical daughter cells from delaminating apically following division events. In this context, ASPP2 maintains the integrity and organisation of the filamentous actin cytoskeleton at apical junctions. ASPP2 is also essential during gastrulation in the primitive streak, in somites and in the head fold region, suggesting that it is required across a wide range of pseudostratified epithelia during morphogenetic events that are accompanied by intense tissue remodelling. Finally, our study also suggests that the interaction between ASPP2 and PP1 is essential to the tumour suppressor function of ASPP2, which may be particularly relevant in the context of tissues that are subject to increased mechanical stress.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Epitelio/crecimiento & desarrollo , Morfogénesis , Proteínas Supresoras de Tumor/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Células CACO-2 , Polaridad Celular , Perros , Técnicas de Cultivo de Embriones , Embrión de Mamíferos , Epitelio/metabolismo , Femenino , Gastrulación , Estratos Germinativos , Humanos , Células de Riñón Canino Madin Darby , Ratones , Ratones Transgénicos , Mutación , Línea Primitiva , Receptores de Neuropéptido Y/metabolismo , Estrés Mecánico , Uniones Estrechas/metabolismo , Proteínas Supresoras de Tumor/genética
6.
Nat Commun ; 12(1): 223, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431820

RESUMEN

Enhancers are DNA sequences that enable complex temporal and tissue-specific regulation of genes in higher eukaryotes. Although it is not entirely clear how enhancer-promoter interactions can increase gene expression, this proximity has been observed in multiple systems at multiple loci and is thought to be essential for the maintenance of gene expression. Bromodomain and Extra-Terminal domain (BET) and Mediator proteins have been shown capable of forming phase condensates and are thought to be essential for super-enhancer function. Here, we show that targeting of cells with inhibitors of BET proteins or pharmacological degradation of BET protein Bromodomain-containing protein 4 (BRD4) has a strong impact on transcription but very little impact on enhancer-promoter interactions. Dissolving phase condensates reduces BRD4 and Mediator binding at enhancers and can also strongly affect gene transcription, without disrupting enhancer-promoter interactions. These results suggest that activation of transcription and maintenance of enhancer-promoter interactions are separable events. Our findings further indicate that enhancer-promoter interactions are not dependent on high levels of BRD4 and Mediator, and are likely maintained by a complex set of factors including additional activator complexes and, at some sites, CTCF and cohesin.


Asunto(s)
Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Transcripción Genética , Factor de Unión a CCCTC/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Glicoles/farmacología , Histonas/metabolismo , Humanos , Leucemia/genética , Leucemia/patología , Modelos Genéticos , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/genética , Transcripción Genética/efectos de los fármacos , Cohesinas
8.
Cancer Metab ; 8: 13, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32647572

RESUMEN

BACKGROUND: Humans produce heat through non-shivering thermogenesis, a metabolic process that occurs in inducible beige adipocytes expressing uncoupling protein 1 (UCP1). UCP1 dissipates the proton gradient of the mitochondrial inner membrane and converts that energy into heat. It is unclear whether cancer cells can exhibit autonomous thermogenesis. Previously, we found that the knockdown of hypoxia-inducible fatty acid binding protein 7 (FABP7) increased reactive oxygen species (ROS) in breast cancer cells. ROS are known to induce beige adipocyte differentiation. METHODS: We investigated the association of tumor hypoxia, FABP7, and UCP1 across breast cancer patients using METABRIC and TCGA data sets. Furthermore, using a breast cancer cell line, HCC1806, we tested the effect of FABP7 knockdown on cellular physiology including thermogenesis. RESULTS: We found a strong mutual exclusivity of FABP7 and UCP1 expression both in METABRIC and in TCGA, indicating major metabolic phenotypic differences. FABP7 was preferentially distributed in poorly differentiated-, estrogen receptor (ER) negative tumors. In contrast, UCP1 was highly expressed in normal ducts and well-differentiated-, ER positive-, less hypoxic tumors. In the cell line-based experiments, UCP1 and its transcriptional regulators were upregulated upon FABP7 knockdown. UCP1 was induced in about 20% of cancer cells, and the effect was increased further in hypoxia. UCP1 depolarized mitochondrial membranes at the site of expression. UCP1 induction was associated with the increase in proton leak, glycolysis, and maximal respiration, mimicking the typical energy profile of beige adipocytes. Most importantly, UCP1 induction elevated cancer cell temperature associated with increased vulnerability to hypoxia and γ-irradiation. CONCLUSIONS: We demonstrated that breast cancer cells can undergo thermogenesis through UCP1 induction. Disrupting FABP7-mediated fatty acid metabolism can unlock UCP1-mediated thermogenesis, potentially making it possible to develop therapies to target thermogenesis. Further study would be warranted to investigate the effect of rise in temperature of cancer cells on patients' outcomes and the relationship to other metabolic pathways.

9.
Nat Commun ; 9(1): 3849, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30242161

RESUMEN

Self-interacting chromatin domains encompass genes and their cis-regulatory elements; however, the three-dimensional form a domain takes, whether this relies on enhancer-promoter interactions, and the processes necessary to mediate the formation and maintenance of such domains, remain unclear. To examine these questions, here we use a combination of high-resolution chromosome conformation capture, a non-denaturing form of fluorescence in situ hybridisation and super-resolution imaging to study a 70 kb domain encompassing the mouse α-globin regulatory locus. We show that this region forms an erythroid-specific, decompacted, self-interacting domain, delimited by frequently apposed CTCF/cohesin binding sites early in terminal erythroid differentiation, and does not require transcriptional elongation for maintenance of the domain structure. Formation of this domain does not rely on interactions between the α-globin genes and their major enhancers, suggesting a transcription-independent mechanism for establishment of the domain. However, absence of the major enhancers does alter internal domain interactions. Formation of a loop domain therefore appears to be a mechanistic process that occurs irrespective of the specific interactions within.


Asunto(s)
Cromatina/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Células Eritroides/metabolismo , Hibridación Fluorescente in Situ , Ratones , Cultivo Primario de Células , Dominios Proteicos , Globinas alfa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA