Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 150(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36861793

RESUMEN

Many organs of Drosophila show stereotypical left-right (LR) asymmetry; however, the underlying mechanisms remain elusive. Here, we have identified an evolutionarily conserved ubiquitin-binding protein, AWP1/Doctor No (Drn), as a factor required for LR asymmetry in the embryonic anterior gut. We found that drn is essential in the circular visceral muscle cells of the midgut for JAK/STAT signaling, which contributes to the first known cue for anterior gut lateralization via LR asymmetric nuclear rearrangement. Embryos homozygous for drn and lacking its maternal contribution showed phenotypes similar to those with depleted JAK/STAT signaling, suggesting that Drn is a general component of JAK/STAT signaling. Absence of Drn resulted in specific accumulation of Domeless (Dome), the receptor for ligands in the JAK/STAT signaling pathway, in intracellular compartments, including ubiquitylated cargos. Dome colocalized with Drn in wild-type Drosophila. These results suggest that Drn is required for the endocytic trafficking of Dome, which is a crucial step for activation of JAK/STAT signaling and the subsequent degradation of Dome. The roles of AWP1/Drn in activating JAK/STAT signaling and in LR asymmetric development may be conserved in various organisms.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Transducción de Señal/fisiología , Endocitosis/genética , Quinasas Janus/genética , Quinasas Janus/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo
2.
Sensors (Basel) ; 24(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000992

RESUMEN

Electric cell-substrate impedance sensing has been used to measure transepithelial and transendothelial impedances of cultured cell layers and extract cell parameters such as junctional resistance, cell-substrate separation, and membrane capacitance. Previously, a three-path cell-electrode model comprising two transcellular pathways and one paracellular pathway was developed for the impedance analysis of MDCK cells. By ignoring the resistances of the lateral intercellular spaces, we develop a simplified three-path model for the impedance analysis of epithelial cells and solve the model equations in a closed form. The calculated impedance values obtained from this simplified cell-electrode model at frequencies ranging from 31.25 Hz to 100 kHz agree well with the experimental data obtained from MDCK and OVCA429 cells. We also describe how the change in each model-fitting parameter influences the electrical impedance spectra of MDCK cell layers. By assuming that the junctional resistance is much smaller than the specific impedance through the lateral cell membrane, the simplified three-path model reduces to a two-path model, which can be used for the impedance analysis of endothelial cells and other disk-shaped cells with low junctional resistances. The measured impedance spectra of HUVEC and HaCaT cell monolayers nearly coincide with the impedance data calculated from the two-path model.


Asunto(s)
Impedancia Eléctrica , Células Endoteliales , Células Epiteliales , Microelectrodos , Perros , Animales , Humanos , Células de Riñón Canino Madin Darby , Células Epiteliales/citología , Células Epiteliales/fisiología , Células Endoteliales/citología , Células Endoteliales/fisiología , Células Endoteliales de la Vena Umbilical Humana , Línea Celular , Modelos Biológicos
3.
Chembiochem ; 23(24): e202200563, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36278314

RESUMEN

Capreomycidine (Cap) is a nonproteinogenic amino acid and building block of nonribosomal peptide (NRP) natural products. We report the formation and activation of Cap in capreomycin biosynthesis. CmnC and CmnD catalyzed hydroxylation and cyclization, respectively, of l-Arg to form l-Cap. l-Cap is then adenylated by CmnG-A before being incorporated into the nonribosomal peptide. The co-crystal structures of CmnG-A with l-Cap and adenosine nucleotides provide insights into the specificity and engineering opportunities of this unique adenylation domain.


Asunto(s)
Aminoácidos , Péptido Sintasas , Péptido Sintasas/metabolismo , Capreomicina , Especificidad por Sustrato , Péptidos/química
4.
Nano Lett ; 21(9): 4106-4114, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33899487

RESUMEN

Thermal management is ubiquitous in the modern world and indispensable for a sustainable future. Radiative heat management provides unique advantages because the heat transfer can be controlled by the surface. However, different object emissivities require different tuning strategies, which poses challenges to develop dynamic and universal radiative heat management devices. Here, we demonstrate a triple-mode midinfrared modulator that can switch between passive heating and cooling suitable for all types of object surface emissivities. The device comprises a surface-textured infrared-semiabsorbing elastomer coated with a metallic back reflector, which is biaxially strained to sequentially achieve three fundamental modes: emission, reflection, and transmission. By analyzing and optimizing the coupling between optical and mechanical properties, we achieve a performance as follows: emittance contrast Δε = 0.58, transmittance contrast Δτ = 0.49, and reflectance contrast Δρ = 0.39. The device can provide a new design paradigm of radiation heat regulation for wearable, robotics, and camouflage technologies.

5.
Development ; 145(7)2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29540499

RESUMEN

Evolution of cis-regulatory elements (such as enhancers) plays an important role in the production of diverse morphology. However, a mechanistic understanding is often limited by the absence of methods for studying enhancers in species other than established model systems. Here, we sought to establish methods to identify and test enhancer activity in the red flour beetle, Tribolium castaneum To identify possible enhancer regions, we first obtained genome-wide chromatin profiles from various tissues and stages of Tribolium using FAIRE (formaldehyde-assisted isolation of regulatory elements)-sequencing. Comparison of these profiles revealed a distinct set of open chromatin regions in each tissue and at each stage. In addition, comparison of the FAIRE data with sets of computationally predicted (i.e. supervised cis-regulatory module-predicted) enhancers revealed a very high overlap between the two datasets. Second, using nubbin in the wing and hunchback in the embryo as case studies, we established the first universal reporter assay system that works in various contexts in Tribolium, and in a cross-species context. Together, these advances will facilitate investigation of cis-evolution and morphological diversity in Tribolium and other insects.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Genes Reporteros/genética , Tribolium/genética , Animales , Clonación de Organismos , Drosophila/genética , Técnicas de Transferencia de Gen , Inmunohistoquímica , Hibridación in Situ
6.
J Virol ; 94(15)2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32434887

RESUMEN

Hepatitis C virus (HCV) has evolved mechanisms to evade innate immunity that are leading to chronic infections. The immunological function of the HCV frameshift (F) protein, which is a frameshift product of core coding sequences, has not been well characterized. The HCV F protein is produced during natural HCV infections and is found most commonly in genotype 1 HCV. In this study, we investigated whether the F protein plays a role in type I interferon (IFN) induction pathways. We engineered F expression constructs from core coding sequences of 4 genotypes (1a, 2a, 3a, and 4a) of HCV as well as the sequences which would only be able to produce core proteins. The peptide lengths and amino acids sequences of F proteins are highly variable. We hypothesized that F proteins from different genotypes might control the type I IFN production and response differently. We found that both IFN-beta (IFN-ß) promoter activities are significantly higher in genotype 1a F protein (F1a)-expressing cells. Conversely, the IFN-ß promoter activities are lower in genotype 2a F (F2a) protein-expressing cells. We also used real-time PCR to confirm IFN-ß mRNA expression levels. By generating chimera F proteins, we discovered that the effects of F proteins were determined by the amino acid sequence 40 to 57 of genotype 1a. The regulation of type I IFN induction pathway is related but not limited to the activity of F1a to interact with proteasome subunits and to disturb the proteasome activity. Further molecular mechanisms of how F proteins from different genotypes of HCV control these pathways differently remain to be investigated.IMPORTANCE Although naturally present in HCV infection patient serum, the virological or immunological functions of the HCV F protein, which is a frameshift product of core coding sequences, remain unclear. Here, we report the effects of the HCV F protein between genotypes and discuss a potential explanation for the differential responses to type I IFN-based therapy among patients infected with different genotypes of HCV. Our study provides one step forward to understanding the host response during HCV infection and new insights for the prediction of the outcome of IFN-based therapy in HCV patients.


Asunto(s)
Genotipo , Hepacivirus/metabolismo , Hepatitis C/metabolismo , Interferón beta/biosíntesis , Transducción de Señal , Proteínas del Núcleo Viral/metabolismo , Línea Celular Tumoral , Hepacivirus/genética , Hepatitis C/genética , Humanos , Interferón beta/genética , Proteínas del Núcleo Viral/genética
7.
Sensors (Basel) ; 21(9)2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33923058

RESUMEN

Electric cell-substrate impedance sensing (ECIS) has been used as a real-time impedance-based method to quantify cell behavior in tissue culture. The method is capable of measuring both the resistance and capacitance of a cell-covered microelectrode at various AC frequencies. In this study, we demonstrate the application of high-frequency capacitance measurement (f = 40 or 64 kHz) for the sensitive detection of both the micromotion and wound-healing migration of human mesenchymal stem cells (hMSCs). Impedance measurements of cell-covered electrodes upon the challenge of various concentrations of carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), from 0.1 to 30 µM, were conducted using ECIS. FCCP is an uncoupler of mitochondrial oxidative phosphorylation (OXPHOS), thereby reducing mitochondrial ATP production. By numerically analyzing the time-series capacitance data, a dose-dependent decrease in hMSC micromotion and wound-healing migration was observed, and the effect was significantly detected at levels as low as 0.1 µM. While most reported works with ECIS use the resistance/impedance time series, our results suggest the potential use of high-frequency capacitance time series for assessing migratory cell behavior such as micromotion and wound-healing migration.


Asunto(s)
Células Madre , Cicatrización de Heridas , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona , Impedancia Eléctrica , Humanos , Mitocondrias
8.
Bioorg Chem ; 100: 103904, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32413630

RESUMEN

Phototriggered drug delivery systems (PTDDSs) facilitate controlled delivery of drugs loaded on photoactive platform to the target region under light stimulation. The present study investigated the synthesis and efficacy of carbazole-coumarin (CC)-fused heterocycles as a PTDDS platform for the photocontrolled release of a chemotherapeutic agent, chlorambucil, in an in vitro model of human breast and leukemia cancer cells. CC-fused heterocycles were constructed using 4-hydroxycarbazole as the starting material, and further modification of these heterocycles yielded two CC derivatives. CC-7 with an additional - COOH group and CC-8 with the triphenylphosphonium (TPP) group, a mitochondria-targeting ligand introduced in the carbazole ring, dissolved in polar solvents and exhibited emission bands at 360 and 450 nm, respectively. The results indicate that visible light of 405 nm triggers the photolysis of the CC-drug conjugate and efficiently delivers the drug in both in vitro cancer cell models. Cytotoxicity evaluation indicates the suppression of proliferation of both types of cells treated with CC-8 under synergy effect combining drug potency and photosensitization. Further, the lower IC50 of CC-8 toward leukemia cells suggests the efficacy of the TPP ligand in increasing the bioavailability of CC-drug conjugates in leukemia treatment. Studies on mitochondria-targeting drug delivery systems are required for improving the performance of anticancer drugs.


Asunto(s)
Antineoplásicos/administración & dosificación , Carbazoles/química , Clorambucilo/administración & dosificación , Cumarinas/química , Preparaciones de Acción Retardada/química , Leucemia/tratamiento farmacológico , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Clorambucilo/farmacocinética , Clorambucilo/farmacología , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Femenino , Humanos , Luz
9.
Genes Cells ; 23(7): 512-516, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29900631

RESUMEN

The Fourth Asia-Pacific Drosophila Research Conference (APDRC4) was held at the convention center of Osaka University, Osaka, Japan, on May 8-11, 2017. Derived from the Japanese Drosophila Research Conference, the APDRC visited its home for the first time since its launch in 2011 with APDRC1 in Taipei, followed by APDRC2 in Seoul and APDRC3 in Beijing. There were 344 participants from 18 countries, more than half of whom were from abroad (Data S1). Two keynote speakers, Drs. Henry Sun and Daisuke Yamamoto, who have had rich science careers, gave overviews of their research. In addition, 14 invited speakers who are highly regarded in their fields introduced their new findings. Thirty-four oral presenters, many of them young investigators and students, were selected from the general participants to report their exciting results. During the conference, many stimulating questions and discussions were shared. Furthermore, 176 posters were presented, which also inspired enthusiastic discussions. In addition to the scientific presentations, a mixer and banquet enabled further intercommunion among the researchers (Figure b, e). During the conference, it was decided that the next Asia-Pacific Drosophila Research Conference (APDRC5) would be in Pune, India, in 2020. Thus, APDRC4 successfully achieved its mission to facilitate Drosophila research in the Asia-Pacific region.


Asunto(s)
Drosophila , Animales , Asia , Drosophila/genética , Drosophila/metabolismo , Humanos
10.
Cytotherapy ; 21(7): 755-768, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31105040

RESUMEN

BACKGROUND: Dendritic cells (DCs) that are derived from hematopoietic stem cells (HSCs) are the most potent antigen-presenting cells and play a pivotal role in initiating the immune response. Hence, large-scale production and direct induction of functional DCs ex vivo from HSCs are crucial to HSC research and clinical potential, such as vaccines for cancer and immune therapy. METHODS: In a previous study, we developed a serum-free HSC expansion system (SF-HSC medium) to expand large numbers of primitive HSCs ex vivo. Herein, a DC induction and expansion medium (DC medium) was proposed to further generate large numbers of functional DCs from serum-free expanded HSCs, which were developed and optimized by factorial design and the steepest ascent method. RESULTS: The DC medium is composed of effective basal medium (Iscove's modified Dulbecco's medium [IMDM]) and cytokines (2.9 ng/mL stem cell factor [SCF], 2.1 ng/mL Flt-3 ligand, 3.6 ng/mL interleukin [IL]-1ß, 19.3 ng/mL granulocyte-macrophage colony-stimulating factor [GM-CSF] and 20.0 ng/mL tumor necrosis factor-α [TNF-α]). After 10-day culture in DC medium, the maximum fold expansion for accumulated CD1a+CD11c+ DCs was more than 4000-fold, and the induced DCs were characterized and confirmed by analysis of growth kinetics, surface antigen expression, endocytosis ability, mixed lymphocyte reaction, specific cytokine secretion and lipopolysaccharide stimulation. DISCUSSION: In conclusion, the combination of DC medium and SF-HSC medium can efficiently induce and expand a large amount of functional DCs from a small scale of HSCs and might be a promising source of DCs for vaccine and immune therapy in the near future.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Medio de Cultivo Libre de Suero/farmacología , Células Dendríticas/citología , Células Madre Hematopoyéticas/citología , Antígenos CD34/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/fisiología , Endocitosis , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/fisiología , Humanos , Lipopolisacáridos/farmacología , Prueba de Cultivo Mixto de Linfocitos , Factor de Células Madre/farmacología
11.
Dev Biol ; 409(2): 518-29, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26687509

RESUMEN

Morphological innovation is a fundamental process in evolution, yet its molecular basis is still elusive. Acquisition of elytra, highly modified beetle forewings, is an important innovation that has driven the successful radiation of beetles. Our RNAi screening for candidate genes has identified abrupt (ab) as a potential key player in elytron evolution. In this study, we performed a series of RNA interference (RNAi) experiments in both Tribolium and Drosophila to understand the contributions of ab to the evolution of beetle elytra. We found that (i) ab is essential for proper wing vein patterning both in Tribolium and Drosophila, (ii) ab has gained a novel function in determining the unique elytron shape in the beetle lineage, (iii) unlike Hippo and Insulin, other shape determining pathways, the shape determining function of ab is specific to the elytron and not required in the hindwing, (iv) ab has a previously undescribed role in the Notch signal-associated wing formation processes, which appears to be conserved between beetles and flies. These data suggest that ab has gained a new function during elytron evolution in beetles without compromising the conserved wing-related functions. Gaining a new function without losing evolutionarily conserved functions may be a key theme in the evolution of morphologically novel structures.


Asunto(s)
Evolución Biológica , Secuencia Conservada , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Proteínas de Insectos/metabolismo , Proteínas Nucleares/metabolismo , Tribolium/anatomía & histología , Alas de Animales/anatomía & histología , Alas de Animales/crecimiento & desarrollo , Animales , Tipificación del Cuerpo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Genes de Insecto , Proteínas de Insectos/genética , Larva , Proteínas Nucleares/genética , Fenotipo , Interferencia de ARN , Receptores Notch/metabolismo , Tribolium/genética , Tribolium/crecimiento & desarrollo
12.
Am J Physiol Regul Integr Comp Physiol ; 304(12): R1130-8, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23594610

RESUMEN

In zebrafish, Rhcg1 was found in apical membranes of skin ionocytes [H⁺-ATPase-rich (HR) cells], which are similar to α-type intercalated cells in mammalian collecting ducts. However, the cellular distribution and role of Rhbg in zebrafish larvae have not been well investigated. In addition, HR cells were hypothesized to excrete ammonia against concentration gradients. In this study, we attempted to compare the roles of Rhbg and Rhcg1 in ammonia excretion by larval skin and compare the capability of skin cells to excrete ammonia against concentration gradients. Using in situ hybridization and immunohistochemistry, Rhbg was localized to both apical and basolateral membranes of skin keratinocytes. A scanning ion-selective electrode technique (SIET) was applied to measure the NH4⁺ flux at the apical surface of keratinocytes and HR cells. Knockdown of Rhbg with morpholino oligonucleotides suppressed ammonia excretion by keratinocytes and induced compensatory ammonia excretion by HR cells. To compare the capability of cells to excrete ammonia against gradients, NH4⁺ flux of cells was determined in larvae exposed to serial concentrations of external NH4⁺. Results showed that HR cells excreted NH4⁺ against higher NH4⁺ concentration than did keratinocytes. Knockdown of the expression of either Rhcg1 or H⁺ -ATPase in HR cells suppressed the capability of HR cells.


Asunto(s)
Amoníaco/metabolismo , Proteínas Sanguíneas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Branquias/metabolismo , Queratinocitos/metabolismo , Glicoproteínas de Membrana/metabolismo , ATPasas de Translocación de Protón/metabolismo , Piel/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Proteínas Sanguíneas/efectos de los fármacos , Proteínas Sanguíneas/genética , Proteínas de Transporte de Catión/efectos de los fármacos , Proteínas de Transporte de Catión/genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Branquias/citología , Hibridación in Situ , Electrodos de Iones Selectos , Queratinocitos/citología , Larva/metabolismo , Glicoproteínas de Membrana/efectos de los fármacos , Glicoproteínas de Membrana/genética , Morfolinos/farmacología , Piel/citología , Proteínas de Pez Cebra/efectos de los fármacos , Proteínas de Pez Cebra/genética
13.
ACS Omega ; 8(28): 24727-24749, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37483187

RESUMEN

Hunger and undernourishment are increasing global challenges as the world's population continuously grows. Consequently, boosting productivity must be implemented to reach the global population's food demand and avoid deforestation. The current promising agricultural practice without herbicides and pesticides is fertilizer management, particularly that of phosphorus fertilizers. Layered double hydroxides (LDHs) have recently emerged as favorable materials in phosphate removal, with practical application possibilities in nanofertilizers. This review discusses the fundamental aspects of phosphate removal/recycling mechanisms and highlights the current endeavors on the development of phosphate-selective sorbents using LDH-based materials. Specific emphasis is provided on the progress in designing LDHs as the slow release of phosphate fertilizers reveals their relevance in making agro-practices more ecologically sound. Relevant pioneering efforts have been briefly reviewed, along with a discussion of perspectives on the potential of LDHs as green nanomaterials to improve food productivity with low eco-impacts.

14.
Nanoscale Adv ; 5(18): 4881-4891, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37705806

RESUMEN

Non-invasive methods for sensing glucose levels are highly desirable due to the comfortableness, simplicity, and lack of infection risk. However, the insufficient accuracy and ease of interference limit their practical medical applications. Here, we develop a non-invasive salivary glucose biosensor based on a ferrocene-chitosan (Fc-Chit) modified carbon nanotube (CNT) electrode through a simple drop-casting method. Compared with previous studies that relied mainly on trial and error for evaluation, this is the first time that dipole moment was proposed to optimize the electron-mediated Fc-Chit, demonstrating sturdy immobilization of glucose oxidase (GOx) on the electrode and improving the electron transfer process. Thus, the superior sensing sensitivity of the biosensor can achieve 119.97 µA mM-1 cm-2 in phosphate buffered saline (PBS) solution over a wide sensing range of 20-800 µM. Additionally, the biosensor exhibited high stability (retaining 95.0% after three weeks) and high specificity toward glucose in the presence of various interferents, attributed to the specific sites enabling GOx to be sturdily immobilized on the electrode. The results not only provide a facile solution for accurate and regular screening of blood glucose levels via saliva tests but also pave the way for designing enzymatic biosensors with specific enzyme immobilization through fundamental quantum calculations.

15.
Chemosphere ; 340: 139834, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37625493

RESUMEN

The novel GdTaO4 phase exhibits good photocatalytic activity under visible light irradiation and holds great promise for the removal of organic dyes from industrial wastes. The GdTaO4 samples were synthesized using the hydrothermal and calcination process with different weight ratios of gadolinium nitrate hydrate (G) and tantalum pentachloride (T), and their structural studies confirmed the formation of the GdTaO4 (GT) phase. Among the samples, GT-4 (with a weight ratio of 4:1) exhibited the highest photocatalytic activity for the degradation of Methyl Orange (MO) dye under visible light irradiation. To enhance the photocatalytic performance, H2O2 was used as a green additive, and the photocatalytic abilities were examined by varying dye types and concentrations. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) revealed the local atomic and electronic structures around Ta and Gd and highlighted the contribution of Gd3+ to the GT system, which is a crucial factor in supporting the enhanced photocatalytic performance. Moreover, in-situ XAS at Gd M5-edge and O K-edge were examined under illumination/dark conditions to explore the electronic structures of photo-excited electron transition in the photocatalytic process. The analytical results provided strong evidence correlating the electronic structure and photocatalytic property of the GT. This study demonstrates that GdTaO4 exhibits good photocatalytic activity under visible light irradiation, making it a promising new Ta-based photocatalyst for the effective removal of organic dyes from industrial wastes.


Asunto(s)
Peróxido de Hidrógeno , Residuos Industriales , Rayos X , Luz , Colorantes
16.
J Immunotoxicol ; 19(1): 27-33, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35378053

RESUMEN

Epicutaneous exposure to protein allergens, such as papain, house dust mite (HDM), and ovalbumin (OVA), represents an important mode of sensitization for skin diseases including protein contact dermatitis, immunologic contact urticaria, and atopic dermatitis. These diseases are inducible by re-exposure to an allergen at both original skin sensitization and distant skin sites. In this study, we examined the serum IgE/IgG1 response, differentiation of T-helper (TH) cells, and epicutaneous TH recall response in mice pre-sensitized with protein allergens through the back skin and subsequently challenged on the ear skin. Repeated epicutaneous sensitization with allergenic proteins including papain, HDM, OVA, and protease inhibitor-treated papain, but not bovine serum albumin, induced serum allergen-specific antibody production, passive cutaneous anaphylaxis responses, and TH2 differentiation in the skin draining lymph node (DLN) cells. Sensitization with papain or HDM, which have protease activity, resulted in the differentiation of TH17 as well as TH2. In papain- or HDM-sensitized mice, a subsequent single challenge on the ear skin induced the expression of TH2 and TH17/TH22 cytokines. These results suggest that allergenic proteins induce the differentiation of TH2 in skin DLN cells and an antibody response. These findings may be useful for identifying proteins of high and low allergenic potential. Moreover, allergenic proteins containing protease activity may also differentiate TH17 and induce TH2 and TH17/TH22 recall responses at epicutaneous challenge sites. This suggests that allergen protease activity accelerates the onset of skin diseases caused by protein allergens.


Asunto(s)
Alérgenos , Inmunoglobulina E , Animales , Ratones , Ovalbúmina , Pyroglyphidae , Piel
17.
Biosensors (Basel) ; 12(5)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35624596

RESUMEN

Electric Cell-substrate Impedance Sensing (ECIS) is an impedance-based, real-time, and label-free measuring system for monitoring cellular activities in tissue culture. Previously, ECIS wound healing assay has been used to wound cells with high electric current and monitor the subsequent cell migration. In this study, we applied ECIS electric fence (EF) method, an alternative to electrical wounding, to assess the effects of different surface coatings on human keratinocyte (HaCaT) migration. The EF prevents inoculated cells from attaching or migrating to the fenced electrode surface while maintaining the integrity of the surface coating. After the EF is turned off, cells migrate into the cell-free area, and the increase in measured impedance is monitored. We cultured HaCaT cells on gold electrodes without coating or coated with poly-L-lysin (PLL), poly-D-lysine (PDL), or type-I collagen. We quantified migration rates according to the different slopes in the impedance time series. It was observed that either poly-L-lysine (PLL) or poly-D-lysine (PDL) limits cell adhesion and migration rates. Furthermore, the surface charge of the coated substrate in the culture condition positively correlates with the cell adhesion and migration process. Our results indicate that the EF method is useful for determining cell migration rates on specific surface coatings.


Asunto(s)
Queratinocitos , Lisina , Adhesión Celular , Movimiento Celular , Impedancia Eléctrica , Humanos
18.
Nanoscale Res Lett ; 17(1): 79, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36001189

RESUMEN

Copper nanowires (CuNWs)-based thin film is one of the potential alternatives to tin-doped indium oxide (ITO) in terms of transparent conductive films (TCFs). However, the severe problem of atmospheric oxidation restricts their practical applications. In this work, we develop a simple approach to fabricate highly stable TCFs through the dip-coating method using reduced graphene oxide (rGO) and CuNWs as the primary materials. Compared with previous works using toxic reduction agents, herein, the CuNWs are synthesized via a green aqueous process using glucose and lactic acid as the reductants, and rGO is prepared through the modified Hummers' method followed by a hydrogen-annealing process to form hydrogen-annealing-reduced graphene oxide (h-rGO). In the rGO/CuNWs films, the dip-coated graphene oxide layer can increase the adhesion of the CuNWs on the substrate, and the fabricated h-rGO/CuNWs can exhibit high atmospheric oxidation resistance and excellent flexibility. The sheet resistance of the h-rGO/CuNWs film only increased from 25.1 to 42.2 Ω/sq after exposure to ambient atmosphere for 30 days and remained almost unchanged after the dynamic bending test for 2500 cycles at a constant radius of 5.3 mm. The h-rGO/CuNWs TCF can be not only fabricated via a route with a superior inexpensive and safe method but also possessed competitive optoelectronic properties with high electrical stability and flexibility, demonstrating great opportunities for future optoelectronic applications.

19.
Artículo en Inglés | MEDLINE | ID: mdl-34064156

RESUMEN

With rapid technology developments and the convenient and fast pace of life in recent years, many people are using disposable products, which cause environmental and ecological damages. A variety of eco-friendly menstrual products have been launched on the market, and "menstrual pads" now have a large market share in Taiwan's menstrual product industry. This study interviewed experts and collected questionnaires for qualitative and quantitative investigation and analysis. The results show that women have positive and open concepts regarding sustainability, as well as a good understanding of their body and are very interested in the performance and usage efficiency of products. The results also indicate that consumers purchase based on their lifestyles; most women collected enough product information before purchasing while overcoming the difficulties in dealing with the environment and learning to adapt them, and the majority of consumers attach importance to comfort, volume, and duration of blood absorption. The results suggest that the government and private enterprises should increase and improve sanitation education and sanitary facilities and guide the approach and serve as an important reference index for the promotion of eco-friendly menstrual products for environmental benefits.


Asunto(s)
Productos para la Higiene Menstrual , Menstruación , Actitud , Cognición , Femenino , Humanos , Estilo de Vida
20.
Polymers (Basel) ; 13(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34577919

RESUMEN

Reactions of divalent metal salts with 4,4-oxybis(N-(pyridine-4-yl)-benzamide), L, and naphthalene-1,4-dicarboxylic acid (1,4-H2NDC) in various solvents gave [Zn(L)(1,4-NDC)·H2O]n, 1, [Cd(L)(1,4-NDC)(H2O)·MeOH]n, 2, and [Co(L)(1,4-NDC)(H2O)0.5·MeOH]n, 3, which have been structurally characterized. Complexes 1-3 show eight-fold interpenetrating frameworks with the dia topology, which exhibit porosities substantiated by CO2 adsorption, whereas 1 and 2 manifest stability in aqueous environments and show high selectivity toward sensing of mesitylene molecules and Fe3+ ions with low detection limits and good reusability up to five cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA