Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 183, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630262

RESUMEN

Apart from the androgen receptor, transcription factors (TFs) that are required for the development and formation of the different segments of the epididymis have remained unknown. We identified TF families expressed in the developing epididymides, of which many showed segment specificity. From these TFs, down-regulation of runt related transcription factors (RUNXs) 1 and 2 expression coincides with epithelial regression in Dicer1 cKO mice. Concomitant deletion of both Runx1 and Runx2 in a mouse epididymal epithelial cell line affected cell morphology, adhesion and mobility in vitro. Furthermore, lack of functional RUNXs severely disturbed the formation of 3D epididymal organoid-like structures. Transcriptomic analysis of the epididymal cell organoid-like structures indicated that RUNX1 and RUNX2 are involved in the regulation of MAPK signaling, NOTCH pathway activity, and EMT-related gene expression. This suggests that RUNXs are master regulators of several essential signaling pathways, and necessary for the maintenance of proper differentiation of the epididymal epithelium.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Humanos , Masculino , Animales , Ratones , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Epidídimo , Diferenciación Celular/genética , Línea Celular
2.
Clin Immunol ; 264: 110261, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788884

RESUMEN

Gene regulatory elements, such as enhancers, greatly influence cell identity by tuning the transcriptional activity of specific cell types. Dynamics of enhancer landscape during early human Th17 cell differentiation remains incompletely understood. Leveraging ATAC-seq-based profiling of chromatin accessibility and comprehensive analysis of key histone marks, we identified a repertoire of enhancers that potentially exert control over the fate specification of Th17 cells. We found 23 SNPs associated with autoimmune diseases within Th17-enhancers that precisely overlapped with the binding sites of transcription factors actively engaged in T-cell functions. Among the Th17-specific enhancers, we identified an enhancer in the intron of RORA and demonstrated that this enhancer positively regulates RORA transcription. Moreover, CRISPR-Cas9-mediated deletion of a transcription factor binding site-rich region within the identified RORA enhancer confirmed its role in regulating RORA transcription. These findings provide insights into the potential mechanism by which the RORA enhancer orchestrates Th17 differentiation.


Asunto(s)
Diferenciación Celular , Elementos de Facilitación Genéticos , Células Th17 , Humanos , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Elementos de Facilitación Genéticos/genética , Células Th17/inmunología , Polimorfismo de Nucleótido Simple , Regulación de la Expresión Génica , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Sitios de Unión/genética , Sistemas CRISPR-Cas
3.
Biol Reprod ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780059

RESUMEN

Hydroxysteroid (17beta) dehydrogenase 1 (HSD17B1) is a steroid synthetic enzyme expressed in ovarian granulosa cells and placental syncytiotrophoblasts. Here, HSD17B1 serum concentration was measured with a validated immuno assay during pregnancy at three time points (12-14, 18-20 and 26-28 weeks of gestation). The concentration increased 2.5-fold (p < 0.0001) and 1.7-fold (p = 0.0019) during the follow-up period for control women and women who later developed preeclampsia (PE), respectively, and a significant difference was observed at weeks 26-28 (p = 0.0266). HSD17B1 concentration at all the three time points positively correlated with serum PAPPA measured at the first time point (first time point r = 0.38, p = 1.1x10-10; second time point r = 0.27, p = 5.9x10-6 and third timepoint r = 0.26, p = 2.3x10-5). No correlation was observed between HSD17B1 and placental growth factor (PLGF). Serum HSD17B1, furthermore, negatively correlated with the mother's weight and body mass index (BMI), mirroring the pattern observed for PAPPA. The univariable logistic regression identified a weak association between HSD17B1 at 26-28 weeks and later development of PE (P = 0.04). Also, the best multivariable model obtained using penalized logistic regression with stable iterative variable selection at 26-28 weeks included HSD17B1, together with PLGF, PAPPA and the mother's BMI. While the area under the ROC curve of the model was higher than that of the adjusted PLGF, the difference was not statistically significant. In summary, the serum concentration of HSD17B1 correlated with PAPPA, another protein expressed in syncytiotrophoblasts, and with mother's weight and BMI but could not be considered as an independent marker for PE.

4.
Nucleic Acids Res ; 50(9): 4938-4958, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35511484

RESUMEN

Th17 cells are essential for protection against extracellular pathogens, but their aberrant activity can cause autoimmunity. Molecular mechanisms that dictate Th17 cell-differentiation have been extensively studied using mouse models. However, species-specific differences underscore the need to validate these findings in human. Here, we characterized the human-specific roles of three AP-1 transcription factors, FOSL1, FOSL2 and BATF, during early stages of Th17 differentiation. Our results demonstrate that FOSL1 and FOSL2 co-repress Th17 fate-specification, whereas BATF promotes the Th17 lineage. Strikingly, FOSL1 was found to play different roles in human and mouse. Genome-wide binding analysis indicated that FOSL1, FOSL2 and BATF share occupancy over regulatory regions of genes involved in Th17 lineage commitment. These AP-1 factors also share their protein interacting partners, which suggests mechanisms for their functional interplay. Our study further reveals that the genomic binding sites of FOSL1, FOSL2 and BATF harbour hundreds of autoimmune disease-linked SNPs. We show that many of these SNPs alter the ability of these transcription factors to bind DNA. Our findings thus provide critical insights into AP-1-mediated regulation of human Th17-fate and associated pathologies.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Antígeno 2 Relacionado con Fos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Células Th17 , Factor de Transcripción AP-1 , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Diferenciación Celular , Antígeno 2 Relacionado con Fos/genética , Antígeno 2 Relacionado con Fos/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Células Th17/citología , Células Th17/metabolismo , Factor de Transcripción AP-1/metabolismo
5.
Nucleic Acids Res ; 50(20): 11470-11491, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36259644

RESUMEN

Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA turnover pathway that depends on the endonuclease SMG6. Here, we show that SMG6 is essential for male germ cell differentiation in mice. Germ-cell conditional knockout (cKO) of Smg6 induces extensive transcriptome misregulation, including a failure to eliminate meiotically expressed transcripts in early haploid cells, and accumulation of NMD target mRNAs with long 3' untranslated regions (UTRs). Loss of SMG6 in the male germline results in complete arrest of spermatogenesis at the early haploid cell stage. We find that SMG6 is strikingly enriched in the chromatoid body (CB), a specialized cytoplasmic granule in male germ cells also harboring PIWI-interacting RNAs (piRNAs) and the piRNA-binding protein PIWIL1. This raises the possibility that SMG6 and the piRNA pathway function together, which is supported by several findings, including that Piwil1-KO mice phenocopy Smg6-cKO mice and that SMG6 and PIWIL1 co-regulate many genes in round spermatids. Together, our results demonstrate that SMG6 is an essential regulator of the male germline transcriptome, and highlight the CB as a molecular platform coordinating RNA regulatory pathways to control sperm production and fertility.


Asunto(s)
Endorribonucleasas , Gránulos de Ribonucleoproteína de Células Germinales , Espermatogénesis , Transcriptoma , Animales , Masculino , Ratones , Células Germinativas/metabolismo , ARN Interferente Pequeño/genética , Espermátides/metabolismo , Espermatogénesis/genética , Endorribonucleasas/metabolismo
6.
Diabetologia ; 65(5): 844-860, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35142878

RESUMEN

AIMS/HYPOTHESIS: Type 1 diabetes is a chronic autoimmune disease of complex aetiology, including a potential role for epigenetic regulation. Previous epigenomic studies focused mainly on clinically diagnosed individuals. The aim of the study was to assess early DNA methylation changes associated with type 1 diabetes already before the diagnosis or even before the appearance of autoantibodies. METHODS: Reduced representation bisulphite sequencing (RRBS) was applied to study DNA methylation in purified CD4+ T cell, CD8+ T cell and CD4-CD8- cell fractions of 226 peripheral blood mononuclear cell samples longitudinally collected from seven type 1 diabetes-specific autoantibody-positive individuals and control individuals matched for age, sex, HLA risk and place of birth. We also explored correlations between DNA methylation and gene expression using RNA sequencing data from the same samples. Technical validation of RRBS results was performed using pyrosequencing. RESULTS: We identified 79, 56 and 45 differentially methylated regions in CD4+ T cells, CD8+ T cells and CD4-CD8- cell fractions, respectively, between type 1 diabetes-specific autoantibody-positive individuals and control participants. The analysis of pre-seroconversion samples identified DNA methylation signatures at the very early stage of disease, including differential methylation at the promoter of IRF5 in CD4+ T cells. Further, we validated RRBS results using pyrosequencing at the following CpG sites: chr19:18118304 in the promoter of ARRDC2; chr21:47307815 in the intron of PCBP3; and chr14:81128398 in the intergenic region near TRAF3 in CD4+ T cells. CONCLUSIONS/INTERPRETATION: These preliminary results provide novel insights into cell type-specific differential epigenetic regulation of genes, which may contribute to type 1 diabetes pathogenesis at the very early stage of disease development. Should these findings be validated, they may serve as a potential signature useful for disease prediction and management.


Asunto(s)
Metilación de ADN , Diabetes Mellitus Tipo 1 , Autoanticuerpos/genética , Autoinmunidad/genética , Linfocitos T CD8-positivos , Niño , Islas de CpG , Metilación de ADN/genética , Diabetes Mellitus Tipo 1/genética , Epigénesis Genética/genética , Humanos , Leucocitos Mononucleares
7.
Diabetologia ; 65(9): 1534-1540, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35716175

RESUMEN

AIMS/HYPOTHESIS: Distinct DNA methylation patterns have recently been observed to precede type 1 diabetes in whole blood collected from young children. Our aim was to determine whether perinatal DNA methylation is associated with later progression to type 1 diabetes. METHODS: Reduced representation bisulphite sequencing (RRBS) analysis was performed on umbilical cord blood samples collected within the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) Study. Children later diagnosed with type 1 diabetes and/or who tested positive for multiple islet autoantibodies (n = 43) were compared with control individuals (n = 79) who remained autoantibody-negative throughout the DIPP follow-up until 15 years of age. Potential confounding factors related to the pregnancy and the mother were included in the analysis. RESULTS: No differences in the umbilical cord blood methylation patterns were observed between the cases and controls at a false discovery rate <0.05. CONCLUSIONS/INTERPRETATION: Based on our results, differences between children who progress to type 1 diabetes and those who remain healthy throughout childhood are not yet present in the perinatal DNA methylome. However, we cannot exclude the possibility that such differences would be found in a larger dataset.


Asunto(s)
Diabetes Mellitus Tipo 1 , Autoanticuerpos , Niño , Preescolar , Metilación de ADN/genética , Femenino , Sangre Fetal/metabolismo , Glutamato Descarboxilasa , Humanos , Embarazo
8.
Brief Bioinform ; 21(6): 2052-2065, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31802105

RESUMEN

Differential splicing (DS) is a post-transcriptional biological process with critical, wide-ranging effects on a plethora of cellular activities and disease processes. To date, a number of computational approaches have been developed to identify and quantify differentially spliced genes from RNA-seq data, but a comprehensive intercomparison and appraisal of these approaches is currently lacking. In this study, we systematically evaluated 10 DS analysis tools for consistency and reproducibility, precision, recall and false discovery rate, agreement upon reported differentially spliced genes and functional enrichment. The tools were selected to represent the three different methodological categories: exon-based (DEXSeq, edgeR, JunctionSeq, limma), isoform-based (cuffdiff2, DiffSplice) and event-based methods (dSpliceType, MAJIQ, rMATS, SUPPA). Overall, all the exon-based methods and two event-based methods (MAJIQ and rMATS) scored well on the selected measures. Of the 10 tools tested, the exon-based methods performed generally better than the isoform-based and event-based methods. However, overall, the different data analysis tools performed strikingly differently across different data sets or numbers of samples.


Asunto(s)
Empalme del ARN , RNA-Seq , Análisis de Secuencia de ARN , Exones , Isoformas de Proteínas , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN/métodos
9.
BMC Genomics ; 22(1): 357, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34000988

RESUMEN

BACKGROUND: Detection of copy number variations (CNVs) from high-throughput next-generation whole-genome sequencing (WGS) data has become a widely used research method during the recent years. However, only a little is known about the applicability of the developed algorithms to ultra-low-coverage (0.0005-0.8×) data that is used in various research and clinical applications, such as digital karyotyping and single-cell CNV detection. RESULT: Here, the performance of six popular read-depth based CNV detection algorithms (BIC-seq2, Canvas, CNVnator, FREEC, HMMcopy, and QDNAseq) was studied using ultra-low-coverage WGS data. Real-world array- and karyotyping kit-based validation were used as a benchmark in the evaluation. Additionally, ultra-low-coverage WGS data was simulated to investigate the ability of the algorithms to identify CNVs in the sex chromosomes and the theoretical minimum coverage at which these tools can accurately function. Our results suggest that while all the methods were able to detect large CNVs, many methods were susceptible to producing false positives when smaller CNVs (< 2 Mbp) were detected. There was also significant variability in their ability to identify CNVs in the sex chromosomes. Overall, BIC-seq2 was found to be the best method in terms of statistical performance. However, its significant drawback was by far the slowest runtime among the methods (> 3 h) compared with FREEC (~ 3 min), which we considered the second-best method. CONCLUSIONS: Our comparative analysis demonstrates that CNV detection from ultra-low-coverage WGS data can be a highly accurate method for the detection of large copy number variations when their length is in millions of base pairs. These findings facilitate applications that utilize ultra-low-coverage CNV detection.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Algoritmos , Secuenciación Completa del Genoma
10.
RNA Biol ; 18(11): 1739-1746, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33522408

RESUMEN

Detection of differentially expressed genes (DEGs) between different biological conditions is a key data analysis step of most RNA-sequencing studies. Conventionally, computational tools have used gene-level read counts as input to test for differential gene expression between sample condition groups. Recently, it has been suggested that statistical testing could be performed with increased power at a lower feature level prior to aggregating the results to the gene level. In this study, we systematically compared the performance of calling the DEGs when using read count data at different levels (gene, transcript, and exon) as input, in the context of two publicly available data sets. Additionally, we tested two different methods for aggregating the lower feature-level p-values to gene-level: Lancaster and empirical Brown's method. Our results show that detection of DEGs is improved compared to the conventional gene-level approach regardless of the lower feature-level used for statistical testing. The overall best balance between accuracy and false discovery rate was obtained using the exon-level approach with empirical Brown's aggregation method, which we provide as a freely available Bioconductor package EBSEA (https://bioconductor.org/packages/release/bioc/html/EBSEA.html).


Asunto(s)
Biomarcadores de Tumor/metabolismo , Secuenciación del Exoma/métodos , Exones , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , RNA-Seq/métodos , Programas Informáticos , Biomarcadores de Tumor/genética , Humanos , Masculino , Neoplasias de la Próstata/patología , Transcriptoma
11.
Am J Pathol ; 188(12): 2890-2901, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30273606

RESUMEN

The role of adrenal androgens as drivers for castration-resistant prostate cancer (CRPC) growth in humans is generally accepted; however, the value of preclinical mouse models of CRPC is debatable, because mouse adrenals do not produce steroids activating the androgen receptor. In this study, we confirmed the expression of enzymes essential for de novo synthesis of androgens in mouse adrenals, with high intratissue concentration of progesterone (P4) and moderate levels of androgens, such as androstenedione, testosterone, and dihydrotestosterone, in the adrenal glands of both intact and orchectomized (ORX) mice. ORX alone had no effect on serum P4 concentration, whereas orchectomized and adrenalectomized (ORX + ADX) resulted in a significant decrease in serum P4 and in a further reduction in the low levels of serum androgens (androstenedione, testosterone, and dihydrotestosterone), measured by mass spectrometry. In line with this, the serum prostate-specific antigen and growth of VCaP xenografts in mice after ORX + ADX were markedly reduced compared with ORX alone, and the growth difference was not abolished by a glucocorticoid treatment. Moreover, ORX + ADX altered the androgen-dependent gene expression in the tumors, similar to that recently shown for the enzalutamide treatment. These data indicate that in contrast to the current view, and similar to humans, mouse adrenals synthesize significant amounts of steroids that contribute to the androgen receptor-dependent growth of CRPC.


Asunto(s)
Glándulas Suprarrenales/patología , Adrenalectomía , Andrógenos/metabolismo , Modelos Animales de Enfermedad , Orquiectomía , Neoplasias de la Próstata Resistentes a la Castración/patología , Glándulas Suprarrenales/metabolismo , Glándulas Suprarrenales/cirugía , Animales , Xenoinjertos , Humanos , Masculino , Ratones , Neoplasias de la Próstata Resistentes a la Castración/etiología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo
12.
Am J Pathol ; 188(1): 216-228, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29126837

RESUMEN

The development of castration-resistant prostate cancer (CRPC) is associated with the activation of intratumoral androgen biosynthesis and an increase in androgen receptor (AR) expression. We recently demonstrated that, similarly to the clinical CRPC, orthotopically grown castration-resistant VCaP (CR-VCaP) xenografts express high levels of AR and retain intratumoral androgen concentrations similar to tumors grown in intact mice. Herein, we show that antiandrogen treatment (enzalutamide or ARN-509) significantly reduced (10-fold, P < 0.01) intratumoral testosterone and dihydrotestosterone concentrations in the CR-VCaP tumors, indicating that the reduction in intratumoral androgens is a novel mechanism by which antiandrogens mediate their effects in CRPC. Antiandrogen treatment also altered the expression of multiple enzymes potentially involved in steroid metabolism. Identical to clinical CRPC, the expression levels of the full-length AR (twofold, P < 0.05) and the AR splice variants 1 (threefold, P < 0.05) and 7 (threefold, P < 0.01) were further increased in the antiandrogen-treated tumors. Nonsignificant effects were observed in the expression of certain classic androgen-regulated genes, such as TMPRSS2 and KLK3, despite the low levels of testosterone and dihydrotestosterone. However, other genes recently identified to be highly sensitive to androgen-regulated AR action, such as NOV and ST6GalNAc1, were markedly altered, which indicated reduced androgen action. Taken together, the data indicate that, besides blocking AR, antiandrogens modify androgen signaling in CR-VCaP xenografts at multiple levels.


Asunto(s)
Antagonistas de Andrógenos/farmacología , Andrógenos/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Animales , Benzamidas , Línea Celular Tumoral , Dihidrotestosterona/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Nitrilos , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/farmacología , Testosterona/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Eur J Nutr ; 58(1): 367-377, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29299736

RESUMEN

PURPOSE: Dietary supplementation with probiotics during pregnancy has been suggested to decrease the risk for obesity in women after delivery and to minimize excessive weight gain in their children. Epigenetic DNA methylation has been proposed to impact on gene activity, thereby providing a plausible molecular mechanism for a broad range of biological processes and diseases. This pilot study aimed to evaluate whether probiotic supplementation during pregnancy could modify the DNA methylation status of the promoters of obesity and weight gain-related genes in mothers and their children. METHODS: A sample of 15 pregnant women was taken from a prospective, randomized mother and infant nutrition and probiotic study. Seven women received the probiotic supplementation and eight served as controls. The women's and their children's DNA methylation status of obesity (623 genes) and weight gain-related (433) gene promoters were analyzed from blood samples at the mean of 9.8 months (range 6.1-12.7 months) postpartum. RESULTS: Probiotic supplementation led to significantly decreased levels of DNA methylation in 37 gene promoters and increased levels of DNA methylation in one gene promoter in women. In their children, 68 gene promoters were significantly affected consistently with a lower level of DNA methylation in the probiotic group. CONCLUSIONS: On the basis of our pilot study, we suggest that probiotic supplementation during pregnancy may affect the DNA methylation status of certain promoters of obesity and weight gain-related genes both in mothers and their children, thereby providing a potential mechanism for long-lasting health effects.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Suplementos Dietéticos , Obesidad/genética , Obesidad/metabolismo , Probióticos/farmacología , Adulto , Femenino , Finlandia , Humanos , Lactante , Recién Nacido , Masculino , Madres , Proyectos Piloto , Embarazo , Probióticos/metabolismo , Estudios Prospectivos
14.
Brief Bioinform ; 16(1): 59-70, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24300110

RESUMEN

RNA-sequencing (RNA-seq) has rapidly become a popular tool to characterize transcriptomes. A fundamental research problem in many RNA-seq studies is the identification of reliable molecular markers that show differential expression between distinct sample groups. Together with the growing popularity of RNA-seq, a number of data analysis methods and pipelines have already been developed for this task. Currently, however, there is no clear consensus about the best practices yet, which makes the choice of an appropriate method a daunting task especially for a basic user without a strong statistical or computational background. To assist the choice, we perform here a systematic comparison of eight widely used software packages and pipelines for detecting differential expression between sample groups in a practical research setting and provide general guidelines for choosing a robust pipeline. In general, our results demonstrate how the data analysis tool utilized can markedly affect the outcome of the data analysis, highlighting the importance of this choice.


Asunto(s)
Interpretación Estadística de Datos , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Transcriptoma , Animales , Humanos , Ratones
15.
Circ Res ; 117(3): 289-99, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26085133

RESUMEN

RATIONALE: Hyperlipidemia and type 2 diabetes mellitus (T2DM) severely impair adaptive vascular growth responses in ischemic muscles. This is largely attributed to dysregulated gene expression, although details of the changes are unknown. OBJECTIVE: To define the role of promoter methylation in adaptive vascular growth in hyperlipidemia (LDLR(-/-)ApoB(100/100)) and T2DM (IGF-II/LDLR(-/-)ApoB(100/100)) mouse models of hindlimb ischemia. METHODS AND RESULTS: Unilateral hindlimb ischemia was induced by ligating femoral artery. Perfusion was assessed using ultrasound, and capillary and arteriole parameters were assessed using immunohistochemistry. Genome-wide methylated DNA sequencing was performed with DNA isolated from ischemic muscle, tissue macrophages (Mϕs), and endothelial cells. Compared with the controls, hyperlipidemia and T2DM mice showed impaired perfusion recovery, which was associated with impaired angiogenesis and arteriogenesis. Genome-wide proximal promoter DNA methylation analysis suggested differential patterns of methylation in Mϕ genes in ischemic muscles. Classically activated M1-Mϕ gene promoters, including Cfb, Serping1, and Tnfsf15, were significantly hypomethylated, whereas alternatively activated M2-Mϕ gene promoters, including Nrp1, Cxcr4, Plxnd1, Arg1, Cdk18, and Fes, were significantly hypermethylated in Mϕs isolated from hyperlipidemia and T2DM ischemic muscles compared with controls. These results combined with mRNA expression and immunohistochemistry showed the predominance of proinflammatory M1-Mϕs, compared with anti-inflammatory and proangiogenic M2-Mϕs in hyperlipidemia and T2DM ischemic muscles. CONCLUSIONS: We found significant promoter hypomethylation of genes typical for proinflammatory M1-Mϕs and hypermethylation of anti-inflammatory, proangiogenic M2-Mϕ genes in hyperlipidemia and T2DM ischemic muscles. Epigenetic alterations modify Mϕ phenotype toward proinflammatory M1 as opposed to anti-inflammatory, proangiogenic, and tissue repair M2 phenotype, which may contribute to the impaired adaptive vascular growth under these pathological conditions.


Asunto(s)
Metilación de ADN , Diabetes Mellitus Tipo 2/genética , Epigénesis Genética , Regulación de la Expresión Génica/genética , Miembro Posterior/irrigación sanguínea , Hiperlipidemias/genética , Isquemia/patología , Macrófagos/metabolismo , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica/genética , Regiones Promotoras Genéticas , Daño por Reperfusión/genética , Adaptación Fisiológica , Animales , Apolipoproteína B-100/genética , Arteriolas/patología , Capilares/patología , Grasas de la Dieta/toxicidad , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Estudio de Asociación del Genoma Completo , Miembro Posterior/diagnóstico por imagen , Inflamación , Isquemia/diagnóstico por imagen , Isquemia/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Regiones Promotoras Genéticas/genética , ARN Mensajero/biosíntesis , Receptores de LDL/deficiencia , Reperfusión , Daño por Reperfusión/patología , Ultrasonografía
16.
J Nutr ; 146(9): 1694-700, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27466607

RESUMEN

BACKGROUND: Increased intestinal permeability may precede adverse metabolic conditions. The extent to which the composition of the gut microbiota and diet contribute to intestinal permeability during pregnancy is unknown. OBJECTIVE: The aim was to investigate whether the gut microbiota and diet differ according to serum zonulin concentration, a marker of intestinal permeability, in overweight pregnant women. METHODS: This cross-sectional study included 100 overweight women [mean age: 29 y; median body mass index (in kg/m(2)): 30] in early pregnancy (<17 wk of gestation; median: 13 wk). Serum zonulin (primary outcome) was determined by using ELISA, gut microbiota by 16S ribosomal RNA sequencing, and dietary intake of macro- and micronutrients from 3-d food diaries. The Mann-Whitney U test was used for pairwise comparisons and linear regression and Spearman's nonparametric correlations for relations between serum zonulin and other outcome variables. RESULTS: Women were divided into "low" (<46.4 ng/mL) and "high" (≥46.4 ng/mL) serum zonulin groups on the basis of the median concentration of zonulin (46.4 ng/mL). The richness of the gut microbiota (Chao 1, observed species and phylogenetic diversity) was higher in the low zonulin group than in the high zonulin group (P = 0.01). The abundances of Bacteroidaceae and Veillonellaceae, Bacteroides and Blautia, and Blautia sp. were lower and of Faecalibacterium and Faecalibacterium prausnitzii higher (P < 0.05) in the low zonulin group than in the high zonulin group. Dietary quantitative intakes of n-3 (ω-3) polyunsaturated fatty acids (PUFAs), fiber, and a range of vitamins and minerals were higher (P < 0.05) in women in the low zonulin group than those in the high zonulin group. CONCLUSIONS: The richness and composition of the gut microbiota and the intake of n-3 PUFAs, fiber, and a range of vitamins and minerals in overweight pregnant women are associated with serum zonulin concentration. Modification of the gut microbiota and diet may beneficially affect intestinal permeability, leading to improved metabolic health of both the mother and fetus. This trial was registered at clinicaltrials.gov as NCT01922791.


Asunto(s)
Biomarcadores/sangre , Toxina del Cólera/sangre , Microbioma Gastrointestinal , Intestinos/microbiología , Adulto , Bacterias/aislamiento & purificación , Índice de Masa Corporal , Estudios Transversales , ADN Bacteriano/aislamiento & purificación , Registros de Dieta , Fibras de la Dieta/administración & dosificación , Ingestión de Energía , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/sangre , Femenino , Haptoglobinas , Humanos , Mucosa Intestinal/metabolismo , Modelos Lineales , Micronutrientes/administración & dosificación , Micronutrientes/sangre , Obesidad/sangre , Obesidad/microbiología , Sobrepeso/sangre , Sobrepeso/microbiología , Permeabilidad , Embarazo , Precursores de Proteínas , ARN Ribosómico 16S/aislamiento & purificación , Ensayos Clínicos Controlados Aleatorios como Asunto , Análisis de Secuencia de ADN
17.
Genes Chromosomes Cancer ; 53(10): 857-64, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24946964

RESUMEN

n familial adenomatous polyposis (FAP), 20% of classical and 70% of attenuated/atypical (AFAP) cases remain mutation-negative after routine testing; yet, allelic expression imbalance may suggest an APC alteration. Our aim was to determine the proportion of families attributable to genetic or epigenetic changes in the APC promoter region. We studied 51 unrelated families/cases (26 with classical FAP and 25 with AFAP) with no point mutations in the exons and exon/intron borders and no rearrangements by multiplex ligation-dependent probe amplification (MLPA, P043-B1). Promoter-specific events of APC were addressed by targeted resequencing, MLPA (P043-C1), methylation-specific MLPA, and Sanger sequencing of promoter regions. A novel 132-kb deletion encompassing the APC promoter 1B and upstream sequence occurred in a classical FAP family with allele-specific APC expression. No promoter-specific point mutations or hypermethylation were present in any family. In conclusion, promoter-specific alterations are a rare cause for mutation-negative FAP (1/51, 2%). The frequency and clinical correlations of promoter 1B deletions are poorly defined. This investigation provides frequencies of 1/26 (4%) for classical FAP, 0/25 (0%) for AFAP, and 1/7 (14%) for families with allele-specific expression of APC. Clinically, promoter 1B deletions may associate with classical FAP without extracolonic manifestations.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/genética , Mutación Puntual , Regiones Promotoras Genéticas , Adolescente , Adulto , Anciano , Alelos , Secuencia de Bases , Estudios de Cohortes , Metilación de ADN , Epigénesis Genética , Humanos , Pérdida de Heterocigocidad , Persona de Mediana Edad , Linaje , Eliminación de Secuencia , Adulto Joven
18.
Diabetologia ; 57(10): 2183-92, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25031069

RESUMEN

AIMS/HYPOTHESIS: Gut microbiota (GM) and diet both appear to be important in the pathogenesis of type 1 diabetes. Fermentable fibres (FFs), of which there is an ample supply in natural, diabetes-promoting diets, are used by GM as a source of energy. Our aim was to determine whether FFs modify GM and diabetes incidence in the NOD mouse. METHODS: Female NOD mice were weaned to a semisynthetic diet and the effects of FF supplementation on diabetes incidence and insulitis were evaluated. Real-time quantitative PCR was employed to determine the effects imposed to gene transcripts in the colon and lymph nodes. Changes to GM were analysed by next-generation sequencing. RESULTS: NOD mice fed semisynthetic diets free from FFs were largely protected from diabetes while semisynthetic diets supplemented with the FFs pectin and xylan (PX) resulted in higher diabetes incidence. Semisynthetic diet free from FFs altered GM composition significantly; addition of PX changed the composition of the GM towards that found in natural-diet-fed mice and increased production of FF-derived short-chain fatty acid metabolites in the colon. The highly diabetogenic natural diet was associated with expression of proinflammatory and stress-related genes in the colon, while the semisynthetic diet free from FFs promoted Il4, Il22, Tgfß and Foxp3 transcripts in the colon and/or pancreatic lymph node. PX in the same diet counteracted these effects and promoted stress-related IL-18 activation in gut epithelial cells. 16S RNA sequencing revealed each diet to give rise to its particular GM composition, with different Firmicutes to Bacteroidetes ratios, and enrichment of mucin-degrading Ruminococcaceae following diabetes-protective FF-free diet. CONCLUSIONS/INTERPRETATION: FFs condition microbiota, affect colon homeostasis and are important components of natural, diabetes-promoting diets in NOD mice.


Asunto(s)
Colon/microbiología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/microbiología , Microbiota/efectos de los fármacos , Pectinas/farmacología , Xilanos/farmacología , Animales , Diabetes Mellitus Tipo 1/inducido químicamente , Femenino , Tracto Gastrointestinal/microbiología , Factor Nuclear 3-gamma del Hepatocito/metabolismo , Interleucina-18/metabolismo , Interleucina-4/metabolismo , Interleucinas/metabolismo , Ganglios Linfáticos/microbiología , Ratones , Ratones Endogámicos NOD , Factor de Crecimiento Transformador beta/metabolismo , Interleucina-22
19.
Environ Sci Technol ; 48(6): 3344-53, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24559272

RESUMEN

Populations of Noccaea caerulescens show tremendous differences in their capacity to hyperaccumulate and hypertolerate metals. To explore the differences that could contribute to these traits, we undertook SOLiD high-throughput sequencing of the root transcriptomes of three phenotypically well-characterized N. caerulescens accessions, i.e., Ganges, La Calamine, and Monte Prinzera. Genes with possible contribution to zinc, cadmium, and nickel hyperaccumulation and hypertolerance were predicted. The most significant differences between the accessions were related to metal ion (di-, trivalent inorganic cation) transmembrane transporter activity, iron and calcium ion binding, (inorganic) anion transmembrane transporter activity, and antioxidant activity. Analysis of correlation between the expression profile of each gene and the metal-related characteristics of the accessions disclosed both previously characterized (HMA4, HMA3) and new candidate genes (e.g., for nickel IRT1, ZIP10, and PDF2.3) as possible contributors to the hyperaccumulation/tolerance phenotype. A number of unknown Noccaea-specific transcripts also showed correlation with Zn(2+), Cd(2+), or Ni(2+) hyperaccumulation/tolerance. This study shows that N. caerulescens populations have evolved great diversity in the expression of metal-related genes, facilitating adaptation to various metalliferous soils. The information will be helpful in the development of improved plants for metal phytoremediation.


Asunto(s)
Brassicaceae/genética , Brassicaceae/metabolismo , Metales Pesados/metabolismo , Transcriptoma/genética , Biodegradación Ambiental , Ecotipo , Perfilación de la Expresión Génica , Proteínas de Plantas/análisis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Contaminantes del Suelo/metabolismo
20.
Nucleic Acids Res ; 40(Web Server issue): W628-32, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22689639

RESUMEN

Genome-wide association studies (GWAS) have discovered many loci associated with common disease and quantitative traits. However, most GWAS have not studied the gene-gene interactions (epistasis) that could be important in complex trait genetics. A major challenge in analysing epistasis in GWAS is the enormous computational demands of analysing billions of SNP combinations. Several methods have been developed recently to address this, some using computers equipped with particular graphical processing units, most restricted to binary disease traits and all poorly suited to general usage on the most widely used operating systems. We have developed the BiForce Toolbox to address the demand for high-throughput analysis of pairwise epistasis in GWAS of quantitative and disease traits across all commonly used computer systems. BiForce Toolbox is a stand-alone Java program that integrates bitwise computing with multithreaded parallelization and thus allows rapid full pairwise genome scans via a graphical user interface or the command line. Furthermore, BiForce Toolbox incorporates additional tests of interactions involving SNPs with significant marginal effects, potentially increasing the power of detection of epistasis. BiForce Toolbox is easy to use and has been applied in multiple studies of epistasis in large GWAS data sets, identifying interesting interaction signals and pathways.


Asunto(s)
Epistasis Genética , Estudio de Asociación del Genoma Completo , Programas Informáticos , Genómica/métodos , Internet , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA