Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cancer Immunol Res ; 11(1): 56-71, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36409930

RESUMEN

The ectonucleotidases CD39 and CD73 catalyze extracellular ATP to immunosuppressive adenosine, and as such, represent potential cancer targets. We investigated biological impacts of CD39 and CD73 in pancreatic ductal adenocarcinoma (PDAC) by studying clinical samples and experimental mouse tumors. Stromal CD39 and tumoral CD73 expression significantly associated with worse survival in human PDAC samples and abolished the favorable prognostic impact associated with the presence of tumor-infiltrating CD8+ T cells. In mouse transplanted KPC tumors, both CD39 and CD73 on myeloid cells, as well as CD73 on tumor cells, promoted polarization of infiltrating myeloid cells towards an M2-like phenotype, which enhanced tumor growth. CD39 on tumor-specific CD8+ T cells and pancreatic stellate cells also suppressed IFNγ production by T cells. Although therapeutic inhibition of CD39 or CD73 alone significantly delayed tumor growth in vivo, targeting of both ectonucleotidases exhibited markedly superior antitumor activity. CD73 expression on human and mouse PDAC tumor cells also protected against DNA damage induced by gemcitabine and irradiation. Accordingly, large-scale pharmacogenomic analyses of human PDAC cell lines revealed significant associations between CD73 expression and gemcitabine chemoresistance. Strikingly, increased DNA damage in CD73-deficient tumor cells associated with activation of the cGAS-STING pathway. Moreover, cGAS expression in mouse KPC tumor cells was required for antitumor activity of the CD73 inhibitor AB680 in vivo. Our study, thus, illuminates molecular mechanisms whereby CD73 and CD39 seemingly cooperate to promote PDAC progression.


Asunto(s)
Adenosina , Neoplasias Pancreáticas , Animales , Humanos , Ratones , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Adenosina/metabolismo , Apirasa , Linfocitos T CD8-positivos/metabolismo , Línea Celular , Neoplasias Pancreáticas
2.
Immunohorizons ; 7(5): 366-379, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37219538

RESUMEN

CD39 (ENTPD1) is a key enzyme responsible for degradation of extracellular ATP and is upregulated in the tumor microenvironment (TME). Extracellular ATP accumulates in the TME from tissue damage and immunogenic cell death, potentially initiating proinflammatory responses that are reduced by the enzymatic activity of CD39. Degradation of ATP by CD39 and other ectonucleotidases (e.g., CD73) results in extracellular adenosine accumulation, constituting an important mechanism for tumor immune escape, angiogenesis induction, and metastasis. Thus, inhibiting CD39 enzymatic activity can inhibit tumor growth by converting a suppressive TME to a proinflammatory environment. SRF617 is an investigational, anti-CD39, fully human IgG4 Ab that binds to human CD39 with nanomolar affinity and potently inhibits its ATPase activity. In vitro functional assays using primary human immune cells demonstrate that inhibiting CD39 enhances T-cell proliferation, dendritic cell maturation/activation, and release of IL-1ß and IL-18 from macrophages. In vivo, SRF617 has significant single-agent antitumor activity in human cell line-derived xenograft models that express CD39. Pharmacodynamic studies demonstrate that target engagement of CD39 by SRF617 in the TME inhibits ATPase activity, inducing proinflammatory mechanistic changes in tumor-infiltrating leukocytes. Syngeneic tumor studies using human CD39 knock-in mice show that SRF617 can modulate CD39 levels on immune cells in vivo and can penetrate the TME of an orthotopic tumor, leading to increased CD8+ T-cell infiltration. Targeting CD39 is an attractive approach for treating cancer, and, as such, the properties of SRF617 make it an excellent drug development candidate.


Asunto(s)
Inmunoglobulina G , Activación de Linfocitos , Humanos , Animales , Ratones , Anticuerpos Monoclonales , Adenosina Trifosfatasas , Adenosina Trifosfato
3.
J Immunother Cancer ; 8(1)2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32345627

RESUMEN

BACKGROUND: CD47 is a broadly expressed cell surface glycoprotein associated with immune evasion. Interaction with the inhibitory receptor signal regulatory protein alpha (SIRPα), primarily expressed on myeloid cells, normally serves to restrict effector function (eg, phagocytosis and immune cell homeostasis). CD47/SIRPα antagonists, commonly referred to as 'macrophage checkpoint' inhibitors, are being developed as cancer interventions. SRF231 is an investigational fully human IgG4 anti-CD47 antibody that is currently under evaluation in a phase 1 clinical trial. The development and preclinical characterization of SRF231 are reported here. METHODS: SRF231 was characterized in assays designed to probe CD47/SIRPα blocking potential and effects on red blood cell (RBC) phagocytosis and agglutination. Additionally, SRF231-mediated phagocytosis and cell death were assessed in macrophage:tumor cell in vitro coculture systems. Further mechanistic studies were conducted within these coculture systems to ascertain the dependency of SRF231-mediated antitumor activity on Fc receptor engagement vs CD47/SIRPα blockade. In vivo, SRF231 was evaluated in a variety of hematologic xenograft models, and the mechanism of antitumor activity was assessed using cytokine and macrophage infiltration analyses following SRF231 treatment. RESULTS: SRF231 binds CD47 and disrupts the CD47/SIRPα interaction without causing hemagglutination or RBC phagocytosis. SRF231 exerts antitumor activity in vitro through both phagocytosis and cell death in a manner dependent on the activating Fc-gamma receptor (FcγR), CD32a. Through its Fc domain, SRF231 engagement with macrophage-derived CD32a serves dual purposes by eliciting FcγR-mediated phagocytosis of cancer cells and acting as a scaffold to drive CD47-mediated death signaling into tumor cells. Robust antitumor activity occurs across multiple hematologic xenograft models either as a single agent or in combination with rituximab. In tumor-bearing mice, SRF231 increases tumor macrophage infiltration and induction of the macrophage cytokines, mouse chemoattractant protein 1 and macrophage inflammatory protein 1 alpha. Macrophage depletion results in diminished SRF231 antitumor activity, underscoring a mechanistic role for macrophage engagement by SRF231. CONCLUSION: SRF231 elicits antitumor activity via apoptosis and phagocytosis involving macrophage engagement in a manner dependent on the FcγR, CD32a.


Asunto(s)
Antígeno CD47/metabolismo , Neoplasias/genética , Receptores de IgG/metabolismo , Animales , Humanos , Ratones , Neoplasias/patología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Cell Commun Signal ; 1(1): 5, 2003 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-14636425

RESUMEN

BACKGROUND: Vascular smooth muscle cell (VSMC) hyperplasia plays an important role in both chronic and acute vascular pathologies including atherosclerosis and restenosis. Considerable work has focused on the mechanisms regulating VSMC proliferation and motility. Earlier work in our lab revealed a novel growth arrest-specific (gas) gene induced in VSMC exposed to the antiproliferative agent heparin. This gene is a member of the CCN family and has been given the name CCN5. The objective of the present study is to elucidate the function of CCN5 protein and to explore its mechanism of action in VSMC. RESULTS: Using RNA interference (RNAi), we first demonstrate that CCN5 is required for the antiproliferative effect of heparin in VSMC. We also use this gene knockdown approach to show that CCN5 is an important negative regulator of motility. To explore the mechanism of action of CCN5 on VSMC motility, we use RNAi to demonstrate that knock down of CCN5 up regulates expression of matrix metalloproteinase-2 (MMP-2), an important stimulator of motility in VSMC. In addition, forced expression of CCN5 via adenovirus results in reduced MMP-2 activity, this also corroborates the gene knock down results. Finally, we show that loss of CCN5 expression in VSMC causes changes in VSMC morphology and cytoskeletal organization, including a reduction in the amount and macromolecular assembly of smooth muscle cell alpha-actin. CONCLUSIONS: This work provides important new insights into the regulation of smooth muscle cell proliferation and motility by CCN5 and may aid the development of therapies for vascular diseases.

5.
J Biol Chem ; 281(49): 37844-52, 2006 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-17028197

RESUMEN

Therapeutic induction of angiogenesis is a potential treatment for chronic ischemia. Heparan sulfate proteoglycans are known to play an important role by their interactions with proangiogenic growth factors such as vascular endothelial growth factor (VEGF). Low molecular weight fucoidan (LMWF), a sulfated polysaccharide from brown seaweeds that mimic some biological activities of heparin, has been shown recently to promote revascularization in rat critical hindlimb ischemia. In this report, we first used cultured human endothelial cells (ECs) to investigate the possible ability of LMWF to enhance the actions of VEGF(165). Data showed that LMWF greatly enhances EC tube formation in growth factor reduced matrigel. LMWF is a strong enhancer of VEGF(165)-induced EC chemotaxis, but not proliferation. In addition, LMWF has no effect on VEGF(121)-induced EC migration, a VEGF isoform that does not bind to heparan sulfate proteoglycans. Then, with binding studies using (125)I-VEGF(165), we observed that LMWF enhances the binding of VEGF(165) to recombinant VEGFR-2 and Neuropilin-1 (NRP1), but not to VEGFR-1. Surface plasmon resonance analysis showed that LMWF binds with high affinity to VEGF(165) (1.2 nm) and its receptors (5-20 nm), but not to VEGF(121). Pre-injection of LMWF on immobilized receptors shows that VEGF(165) has the highest affinity for VEGFR-2 and NRP1, as compared with VEGFR-1. Overall, the effects of LMWF were much more pronounced than those of LMW heparin. These findings suggested an efficient mechanism of action of LMWF by promoting VEGF(165) binding to VEGFR-2 and NRP1 on ECs that could help in stimulating therapeutic revascularization.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Neuropilina-1/metabolismo , Polisacáridos/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Células Cultivadas , Humanos , Peso Molecular , Neovascularización Fisiológica/efectos de los fármacos , Neuropilina-1/genética , Polisacáridos/química , Unión Proteica , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
6.
J Lipid Res ; 46(11): 2477-87, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16150821

RESUMEN

Adiponutrin and a related protein, adipocyte triglyceride lipase (ATGL; also known as Desnutrin), were recently described as adipocyte-specific proteins with lipid hydrolase activity. Using bioinformatics, we identified three additional Adiponutrin family members (GS2, GS2-Like, and PNPLA1). Here, we report on the expression, regulation, and activity of GS2 and GS2-Like compared with Adiponutrin and Desnutrin/ATGL. GS2-Like is expressed and regulated in a manner similar to Adiponutrin; however, the absolute levels of mRNA are significantly lower than those of Adiponutrin or Desnutrin/ATGL. GS2 transcripts were identified only in humans and are highly expressed in adipose as well as other tissues. All four proteins show lipase activity in vitro, which is dependent on the presence of the active site serine for Adiponutrin, Desnutrin/ATGL, and GS2. Overexpression of Desnutrin/ATGL, GS2, and GS2-Like, but not Adiponutrin, decreases intracellular triglyceride levels. This is consistent with a function for Desnutrin/ATGL, GS2, and GS2-Like in lipolysis, but not for Adiponutrin. Consistent with previously reported data, Desnutrin/ATGL is upregulated by fasting in adipose tissue, whereas Adiponutrin is downregulated. Additionally, Adiponutrin and GS2-Like, but not Desnutrin/ATGL, are strongly induced in the liver of ob/ob mice. Our data support distinct functions for Adiponutrin and Desnutrin/ATGL and raise the possibility that GS2 may contribute significantly to lipolysis in human adipose tissue.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/química , Triglicéridos/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/enzimología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Northern Blotting , Biología Computacional/métodos , Regulación de la Expresión Génica , Vectores Genéticos , Humanos , Inmunoprecipitación , Lipasa/metabolismo , Lipólisis , Masculino , Cadenas de Markov , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Datos de Secuencia Molecular , Mutación , Ácido Oléico/química , Filogenia , Estructura Terciaria de Proteína , ARN/metabolismo , ARN Mensajero/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esterol Esterasa/metabolismo , Transfección , Regulación hacia Arriba
7.
Am J Pathol ; 162(1): 219-31, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12507905

RESUMEN

Vascular smooth muscle cell (VSMC) hyperplasia plays an important role in both chronic and acute vascular pathologies. Considerable work has focused on the mechanisms regulating VSMC growth and the search for agents that could suppress VSMC hyperproliferation. One of the several inhibitors studied is the glycosaminoglycan heparin, which inhibits VSMC proliferation and migration both in cell culture and in animal models (Mishra-Gorur K, Delmolino LM, Castellot Jr JJ: Biological functions of heparan sulfate and heparan sulfate proteoglycans. Trends Glycosci Glycotechnol 1998, 10:193-210). To aid our understanding of the anti-proliferative mechanism of action of heparin, we used a subtractive hybridization approach to isolate and characterize a novel growth arrest-specific (gas) gene induced in VSMCs exposed to heparin (Delmolino LM, Stearns NA, Castellot Jr JJ: Heparin induces a member of the CCN family which has characteristics of a growth arrest specific gene. Mol Biol Cell 1997, 8:287a and Delmolino LM, Stearns NA, Castellot Jr JJ: COP-1, a member of the CCN family, is a heparin-induced growth arrest specific gene in vascular smooth muscle cells. J Cell Physiol 2001, 188:45-55). This gene is a member of the cysteine-rich 61/connective tissue growth factor/nephroblastoma-overexpressed (CCN) family and has been given the name CCN5. In this report, we provide functional evidence that CCN5 can inhibit VSMC proliferation, motility, and invasiveness. In contrast, adhesion and apoptosis are unaffected by CCN5 in this cell type. We also significantly extend previous data from our laboratory that suggests CCN5 is a growth arrest-specific (gas) gene. Furthermore, we map for the first time the cellular localization of CCN5 protein in cultured VSMCs. We also examine uninjured and balloon-injured rat carotid arteries for CCN5 expression. The results from the in vitro and in vivo localization studies show that CCN5 is temporally and spatially expressed in a manner consistent with a role in regulating proliferation, motility, and invasiveness of VSMCs.


Asunto(s)
Movimiento Celular/fisiología , Músculo Liso Vascular/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Adenoviridae/genética , Animales , Apoptosis/efectos de los fármacos , Proteínas CCN de Señalización Intercelular , Enfermedades de las Arterias Carótidas/genética , Enfermedades de las Arterias Carótidas/metabolismo , Enfermedades de las Arterias Carótidas/patología , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , División Celular/efectos de los fármacos , División Celular/fisiología , Inhibición de Migración Celular , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Vectores Genéticos/genética , Vectores Genéticos/farmacología , Heparina/farmacología , Masculino , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Ratas , Ratas Sprague-Dawley , Proteínas Represoras/farmacología , Transfección
8.
Mol Hum Reprod ; 10(3): 181-7, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14981145

RESUMEN

Uterine fibroids (leiomyomas) are a major women's health problem. Currently, the standard for treatment remains hysterectomy, since no other treatment modalities can reduce both symptoms and recurrence. As leiomyomas are benign neoplasias of smooth muscle cells, we sought to understand the regulation of uterine smooth muscle cell mitogenesis by CCN5, a growth arrest-specific gene in vascular smooth muscle cells which is induced and maintained by heparin treatment. Using autologous human myometrial and leiomyoma smooth muscle cells, we demonstrate that the proliferation and motility of both cell types are inhibited by the overexpression of CCN5. Surprisingly, we show that even though CCN5 is induced by heparin in vascular smooth muscle cells, treatment with heparin does not induce CCN5 expression in human uterine smooth muscle cells. Furthermore, we examine CCN5 mRNA expression in 10 autologous pairs of human myometrial and leiomyoma tissues and determine that CCN5 is down-regulated in 100% of the leiomyoma tissues analysed when compared to their normal myometrial counterparts. Thus, our data strongly suggest that CCN5 may exert an important function in maintaining the normal uterine phenotype and that loss of the anti-proliferative protein CCN5 from normal myometrium may account, at least in part, for tumorigenesis.


Asunto(s)
Movimiento Celular/fisiología , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Leiomioma/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas de Neoplasias/deficiencia , Factores de Transcripción/deficiencia , Neoplasias Uterinas/metabolismo , Adenoviridae , Proteínas CCN de Señalización Intercelular , División Celular/fisiología , Regulación hacia Abajo , Femenino , Vectores Genéticos , Heparina/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Leiomioma/genética , Leiomioma/patología , Miocitos del Músculo Liso/patología , Proteínas de Neoplasias/genética , Proteínas Represoras , Factores de Transcripción/genética , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Útero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA