Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Immunol ; 202(1): 171-182, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30504420

RESUMEN

Innate lymphoid cells (ILCs) guard epithelial tissue integrity during homeostasis, but can be potent immune effector cells during inflammation. Precursors to all ILC subsets (ILC precursors [ILCP]) have been identified in human peripheral blood (PB). We found that during homeostasis, ILCP in PB of mouse and human expressed homing receptors for secondary lymphoid organs, mainly CD62L. These ILCP entered mouse lymph nodes in a CD62L-dependent way and relied on S1P receptors for their exit. Importantly, CD62L expression was absent on human ILCs expressing NKp44 in tonsils and PB of Crohn disease patients, and relatively fewer CD62L+ ILCP were present in PB of Crohn disease patients. These data are in agreement with selective expression of CD62L on nonactivated ILCP. As such, we conclude that CD62L not only serves as a functional marker of ILCP, but has potential to be used in the clinic as a diagnostic marker in inflammatory disorders.


Asunto(s)
Células Sanguíneas/inmunología , Enfermedad de Crohn/inmunología , Selectina L/metabolismo , Ganglios Linfáticos/inmunología , Linfocitos/inmunología , Células Progenitoras Linfoides/fisiología , Animales , Células Cultivadas , Femenino , Homeostasis , Humanos , Inmunidad Innata , Selectina L/genética , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor 2 Gatillante de la Citotoxidad Natural/metabolismo , Receptores de Lisoesfingolípidos/metabolismo
2.
J Immunol ; 197(7): 2686-94, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27574301

RESUMEN

During embryogenesis, lymph nodes form through intimate interaction between lymphoid tissue inducer and lymphoid tissue organizer (LTo) cells. Shortly after birth in mice, specialized stromal cell subsets arise that organize microenvironments within the lymph nodes; however, their direct precursors have not yet been identified. In the bone marrow, mesenchymal stem cells are labeled with GFP in nestin-GFP mice, and we show that during all stages of development, nestin(+) cells are present within lymph nodes of these mice. At day of birth, both mesenchymal CD31(-) and endothelial CD31(+) LTo cells were GFP(+), and only the population of CD31(-) LTo cells contained mesenchymal precursors. These CD31(-)nestin(+) cells are found in the T and B cell zones or in close association with high endothelial venules in adult lymph nodes. Fate mapping of nestin(+) cells unambiguously revealed the contribution of nestin(+) precursor cells to the mesenchymal as well as the endothelial stromal populations within lymph nodes. However, postnatal tamoxifen induced targeting of nestin(+) cells in nes-creER mice showed that most endothelial cells and only a minority of the nonendothelial cells were labeled. Overall our data show that nestin(+) cells contribute to all subsets of the complex stromal populations that can be found in lymph nodes.


Asunto(s)
Células Endoteliales/citología , Ganglios Linfáticos/citología , Nestina/metabolismo , Células Madre/citología , Células Madre/metabolismo , Células del Estroma/citología , Células del Estroma/metabolismo , Animales , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Nestina/genética
3.
J Neurosci ; 33(4): 1660-71, 2013 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-23345238

RESUMEN

The blood-brain barrier (BBB) is crucial in the maintenance of a controlled environment within the brain to safeguard optimal neuronal function. The endothelial cells (ECs) of the BBB possess specific properties that restrict the entry of cells and metabolites into the CNS. The specialized BBB endothelial phenotype is induced during neurovascular development by surrounding cells of the CNS. However, the molecular differentiation of the BBB endothelium remains poorly understood. Retinoic acid (RA) plays a crucial role in the brain during embryogenesis. Because radial glial cells supply the brain with RA during the developmental cascade and associate closely with the developing vasculature, we hypothesize that RA is important for the induction of BBB properties in brain ECs. Analysis of human postmortem fetal brain tissue shows that the enzyme mainly responsible for RA synthesis, retinaldehyde dehydrogenase, is expressed by radial glial cells. In addition, the most important receptor for RA-driven signaling in the CNS, RA-receptor ß (RARß), is markedly expressed by the developing brain vasculature. Our findings have been further corroborated by in vitro experiments showing RA- and RARß-dependent induction of different aspects of the brain EC barrier. Finally, pharmacologic inhibition of RAR activation during the differentiation of the murine BBB resulted in the leakage of a fluorescent tracer as well as serum proteins into the developing brain and reduced the expression levels of important BBB determinants. Together, our results point to an important role for RA in the induction of the BBB during human and mouse development.


Asunto(s)
Barrera Hematoencefálica/embriología , Barrera Hematoencefálica/metabolismo , Neuroglía/metabolismo , Tretinoina/metabolismo , Animales , Western Blotting , Diferenciación Celular/fisiología , Línea Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Feto , Regulación del Desarrollo de la Expresión Génica , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología
4.
J Neurochem ; 121(5): 730-7, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21777246

RESUMEN

Homeostasis of the brain is dependent on the blood-brain barrier (BBB). This barrier tightly regulates the exchange of essential nutrients and limits the free flow of immune cells into the CNS. Perturbations of BBB function and the loss of its immune quiescence are hallmarks of a variety of brain diseases, including multiple sclerosis (MS), vascular dementia, and stroke. In particular, diapedesis of monocytes and subsequent trafficking of monocyte-derived macrophages into the brain are key mediators of demyelination and axonal damage in MS. Endothelin-1 (ET-1) is considered as a potent pro-inflammatory peptide and has been implicated in the development of cardiovascular diseases. Here, we studied the role of different components of the endothelin system, i.e., ET-1, its type B receptor (ET(B)) and endothelin-converting enzyme-1 (ECE-1) in monocyte diapedesis of a human brain endothelial cell barrier. Our pharmacological inhibitory and specific gene knockdown studies point to a regulatory function of these proteins in transendothelial passage of monocytes. Results from this study suggest that the endothelin system is a putative target within the brain for anti-inflammatory treatment in neurological diseases.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Endotelinas/metabolismo , Monocitos/citología , Migración Transendotelial y Transepitelial/fisiología , Ácido Aspártico Endopeptidasas/metabolismo , Western Blotting , Línea Celular , Enzimas Convertidoras de Endotelina , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Metaloendopeptidasas/metabolismo , Receptores de Endotelina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA