Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 147(6)2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32108026

RESUMEN

Reliance on rodents for understanding pancreatic genetics, development and islet function could limit progress in developing interventions for human diseases such as diabetes mellitus. Similarities of pancreas morphology and function suggest that porcine and human pancreas developmental biology may have useful homologies. However, little is known about pig pancreas development. To fill this knowledge gap, we investigated fetal and neonatal pig pancreas at multiple, crucial developmental stages using modern experimental approaches. Purification of islet ß-, α- and δ-cells followed by transcriptome analysis (RNA-seq) and immunohistology identified cell- and stage-specific regulation, and revealed that pig and human islet cells share characteristic features that are not observed in mice. Morphometric analysis also revealed endocrine cell allocation and architectural similarities between pig and human islets. Our analysis unveiled scores of signaling pathways linked to native islet ß-cell functional maturation, including evidence of fetal α-cell GLP-1 production and signaling to ß-cells. Thus, the findings and resources detailed here show how pig pancreatic islet studies complement other systems for understanding the developmental programs that generate functional islet cells, and that are relevant to human pancreatic diseases.


Asunto(s)
Diferenciación Celular/genética , Células Secretoras de Insulina/fisiología , Islotes Pancreáticos/embriología , Islotes Pancreáticos/crecimiento & desarrollo , Porcinos , Animales , Animales Recién Nacidos , Células Cultivadas , Embrión de Mamíferos , Femenino , Feto/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Células Secretoras de Glucagón/citología , Células Secretoras de Glucagón/fisiología , Humanos , Islotes Pancreáticos/citología , Ratones , Organogénesis/genética , Embarazo , Porcinos/embriología , Porcinos/genética , Porcinos/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
2.
Med Sci Monit ; 29: e938979, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36659834

RESUMEN

BACKGROUND Bone marrow stem cells have been shown to be a promising therapeutic strategy for autoimmune diseases. This study aimed to assess the safety and efficacy of autologous hematopoietic stem cell (ABMSC) transplantation without immunoablation used to suppress the autoimmune reaction in 6 children with newly diagnosed autoimmune diabetes mellitus. We monitored the levels of islet cell antibodies (ICA), antibodies against islet antigen-related tyrosine phosphatase 2 (IA2), glutamic acid-decarboxylase (GAD) antibodies, and anti-insulin antibodies (AIA). MATERIAL AND METHODS Between 2018 and 2022, 6 children (age 6-10 years, average 8 years) recently diagnosed with type 1 diabetes mellitus with the presence of ICA, IA2, GAD, AIA and ketoacidosis, were treated with an ABMSC stimulated with Filgrastim, granulocyte colony-stimulating factor (G-CSF), 10 ug/kg/day for 4 days. Bone marrow was harvested on day 5, collected by puncture and identified as mononuclear cells >180×106/kg, CD34+ >0.22%, and transplanted by intravenous (i.v.) infusion. Patients were monitored with ICA, IA2, GAD, AIA, C-peptide, blood glucose, and glycosylated hemoglobin A1c (HbA1C) 6 months after the procedure. RESULTS At 6-month follow-up, we observed a negative value of the ICA, which was previously positive (P<0.001). The IA2 (p=0.037) and GAD (P=0.377) antibodies decreased slowly but were significantly lower. AIA remained high. A decrease in blood glucose and HbA1C levels was observed (P<0.001). No complications occurred during follow-up. CONCLUSIONS Autologous hematopoietic stem cell transplantation without immunoablation was safe and effective in significantly decreasing the production and effect of autoantibodies against ICA, GAD, and IA2, as well as decreasing blood sugar levels and HbA1c.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Células Madre Hematopoyéticas , Islotes Pancreáticos , Humanos , Niño , Autoanticuerpos , Hemoglobina Glucada , Glucemia , Glutamato Descarboxilasa
3.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446104

RESUMEN

Physiologic insulin secretion consists of an oscillating pattern of secretion followed by distinct trough periods that stimulate ligand and receptor activation. Apart from the large postprandial bolus release of insulin, ß cells also secrete small amounts of insulin every 4-8 min independent of a meal. Insulin resistance is associated with a disruption in the normal cyclical pattern of insulin secretion. In the case of type-2 diabetes, ß-cell mass is reduced due to apoptosis and ß cells secrete insulin asynchronously. When ligand/receptors are constantly exposed to insulin, a negative feedback loop down regulates insulin receptor availability to insulin, creating a relative hyperinsulinemia. The relative excess of insulin leads to insulin resistance (IR) due to decreased receptor availability. Over time, progressive insulin resistance compromises carbohydrate metabolism, and may progress to type-2 diabetes (T2D). In this review, we discuss insulin resistance pathophysiology and the use of dynamic exogenous insulin administration in a manner consistent with more normal insulin secretion periodicity to reverse insulin resistance. Administration of insulin in such a physiologic manner appears to improve insulin sensitivity, lower HgbA1c, and, in some instances, has been associated with the reversal of end-organ damage that leads to complications of diabetes. This review outlines the rationale for how the physiologic secretion of insulin orchestrates glucose metabolism, and how mimicking this secretion profile may serve to improve glycemic control, reduce cellular inflammation, and potentially improve outcomes in patients with diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Insulina/metabolismo , Ligandos , Diabetes Mellitus Tipo 2/metabolismo , Insulina Regular Humana , Glucemia/metabolismo
4.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37958696

RESUMEN

The scourge of type-1 diabetes (T1D) is the morbidity and mortality it and its complications cause at a younger age. This propels the constant search for better diagnostic, treatment, and management strategies, with the ultimate quest being a cure for T1D. Recently, the therapeutic potential of exosomes has generated a lot of interest. Among the characteristics of exosomes of particular interest are (a) their regenerative capacity, which depends on their "origin", and (b) their "content", which determines the cell communication and crosstalk they influence. Other functional capacities, including paracrine and endocrine homeostatic regulation, pathogenic response ability resulting in insulin secretory defects or ß-cell death under normal metabolic conditions, immunomodulation, and promotion of regeneration, have also garnered significant interest. Exosome "specificity" makes them suitable as biomarkers or predictors, and their "mobility" and "content" lend credence to drug delivery and therapeutic suitability. This review aims to highlight the functional capacities of exosomes and their established as well as novel contributions at various pathways in the onset and progression of T1D. The pathogenesis of T1D involves a complex crosstalk between insulin-secreting pancreatic ß-cells and immune cells, which is partially mediated by exosomes. We also examine the potential implications for type 2 diabetes (T2D), as the link in T2D has guided T1D exploration. The collective landscape presented is expected to help identify how a deeper understanding of exosomes (and their cargo) can provide a framework for actionable solutions to prevent, halt, or change the very course of T1D and its complications.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Exosomas , Humanos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/metabolismo , Exosomas/metabolismo , Insulina/metabolismo , Biomarcadores/metabolismo
5.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35163806

RESUMEN

Prevalence of type 2 diabetes increased from 2.5% of the US population in 1990 to 10.5% in 2018. This creates a major public health problem, due to increases in long-term complications of diabetes, including neuropathy, retinopathy, nephropathy, skin ulcers, amputations, and atherosclerotic cardiovascular disease. In this review, we evaluated the scientific basis that supports the use of physiologic insulin resensitization. Insulin resistance is the primary cause of type 2 diabetes. Insulin resistance leads to increasing insulin secretion, leading to beta-cell exhaustion or burnout. This triggers a cascade leading to islet cell destruction and the long-term complications of type 2 diabetes. Concurrent with insulin resistance, the regular bursts of insulin from the pancreas become irregular. This has been treated by the precise administration of insulin more physiologically. There is consistent evidence that this treatment modality can reverse the diabetes-associated complications of neuropathy, diabetic ulcers, nephropathy, and retinopathy, and that it lowers HbA1c. In conclusion, physiologic insulin resensitization has a persuasive scientific basis, significant treatment potential, and likely cost benefits.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Resistencia a la Insulina , Insulina Regular Humana/uso terapéutico , Diabetes Mellitus Tipo 2/metabolismo , Hemoglobina Glucada/metabolismo , Humanos , Secreción de Insulina/efectos de los fármacos , Insulina Regular Humana/farmacología , Páncreas/efectos de los fármacos , Páncreas/metabolismo
6.
Xenotransplantation ; 28(3): e12667, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33438288

RESUMEN

BACKGROUND: Necrostatin-1 (Nec-1) supplementation to tissue culture media on day 3 has recently been shown to augment the insulin content, endocrine cellular composition, and insulin release of pre-weaned porcine islets (PPIs); however, its effects were only examined for the first 7 days of tissue culture. The present study examined whether the addition of Nec-1 on day 3 could further enhance the in vitro development and function of PPIs after 14 days of tissue culture. METHODS: PPIs were isolated from 8- to 15-day-old, pre-weaned Yorkshire piglets and cultured in an islet maturation media supplemented with Nec-1 on day 3. The recovery, viability, insulin content, endocrine cellular composition, GLUT2 expression in beta cells, differentiation and proliferation potential, and glucose-stimulated insulin secretion of PPIs were assessed on days 3, 7, and 14 of tissue culture (n = 5 on each day). RESULTS: Compared with day 7 of tissue culture, islets on day 14 had a lower recovery, GLUT2 expression in beta cells, proliferation capacity of endocrine cells, and glucose-induced insulin stimulation index. Prolonging the culture time to 14 days did not affect islet viability, insulin content, proportion of endocrine cells, and differentiation potential. CONCLUSION: The growth-inducing effects of Nec-1 on PPIs were most effective on day 7 of tissue culture when added on day 3. Our findings support existing evidence that the in vitro activities of Nec-1 are short-lived and encourage future studies to explore the use of other novel growth factors during prolonged islet tissue culture.


Asunto(s)
Islotes Pancreáticos , Animales , Imidazoles , Indoles , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Porcinos , Trasplante Heterólogo
7.
Xenotransplantation ; 28(4): e12703, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34176167

RESUMEN

BACKGROUND: Porcine islet xenotransplantation is a promising treatment for type 1 diabetes as an alternative to human pancreatic islet transplantation and long-term insulin therapy. Several research groups have explored porcine islets as an alternative to the inconsistent and chronic shortage of pancreases from human organ donors. Studies have confirmed successful transplant of porcine islets into non-human primate models of diabetes; however, in most cases, they require more than one adult porcine donor to achieve sufficient viable islet mass for sustained function. The importance of GMP-grade reagents includes the following: specific enzymes utilized in the pancreatic isolation process were identified as a key factor in successful human clinical islet transplantation trials using cadaveric islets. As xenotransplantation clinical research progresses, isolation reagents and digestion enzymes play a key role in the consistency of the product and ultimately the outcome of the islet xenotransplant. In this study, we evaluated several commercially available enzyme blends that have been used for islet isolation. We evaluated their impact on islet isolation yield and subsequent islet function as part of our plan to bring xenotransplantation into clinical xenotransplantation trials. METHODS: Adult porcine islets were isolated from 16 to 17-month-old Yucatan miniature pigs following standard rapid procurement. Pigs weighed on average 48.71 ± 2.85 kg, and the produced pancreases were 39.51 ± 1.80 grams (mean ± SEM). After ductal cannulation, we evaluated both GMP-grade enzymes (Collagenase AF-1 GMP grade and Liberase MTF C/T GMP grade) and compared with standard non-GMP enzyme blend (Collagenase P). Islet quality control assessments including islet yield, islet size (IEQ), membrane integrity (acridine orange/propidium iodide), and functional viability (GSIS) were evaluated in triplicate on day 1 post-islet isolation culture. RESULTS: Islet yield was highest in the group of adult pigs where Collagenase AF-1 GMP grade was utilized. The mean islet yield was 16 586 ± 1391 IEQ/g vs 8302 ± 986 IEQ/g from pancreases isolated using unpurified crude Collagenase P. The mean islet size was higher in Collagenase AF-1 GMP grade with neutral protease than in Collagenase P and Liberase MTF C/T GMP grade. We observed no significant difference between the experimental groups, but in vitro islet function after overnight tissue culture was significantly higher in Collagenase AF-1 GMP grade with neutral protease and Liberase MTF C/T GMP grade than the crude control enzyme group. As expected, the GMP-grade enzyme has significantly lower endotoxin levels than the crude control enzyme group when measured. CONCLUSIONS: This study validates the importance of using specifically blended GMP grade for adult pig islet isolation for xenotransplantation trials and the ability to isolate a sufficient number of viable islets from one adult pig to provide a sufficient number for islets for a clinical islet transplantation. GMP-grade enzymes are highly efficient in increasing islet yield, size, viability, and function at a lower and acceptable endotoxin level. Ongoing research transplants these islets into animal models of diabetes to validate in vivo function. Also, these defined and reproducible techniques using GMP-grade enzymes allow for continuance of our plan to advance to xenotransplantation of isolated pig islets for the treatment of type 1 diabetes.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Separación Celular , Colagenasas , Páncreas , Porcinos , Trasplante Heterólogo
8.
Xenotransplantation ; 27(1): e12555, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31532037

RESUMEN

BACKGROUND: Necroptosis has been demonstrated to be a primary mechanism of islet cell death. This study evaluated whether the supplementation of necrostatin-1 (Nec-1), a potent inhibitor of necroptosis, to islet culture media could improve the recovery, maturation, and function of pre-weaned porcine islets (PPIs). METHODS: PPIs were isolated from pre-weaned Yorkshire piglets (8-15 days old) and either cultured in control islet culture media (n = 6) or supplemented with Nec-1 (100 µM, n = 5). On days 3 and 7 of culture, islets were assessed for recovery, insulin content, viability, cellular composition, GLUT2 expression in beta cells, differentiation of pancreatic endocrine progenitor cells, function, and oxygen consumption rate. RESULTS: Nec-1 supplementation induced a 2-fold increase in the insulin content of PPIs on day 7 of culture. When compared to untreated islets, Nec-1 treatment doubled the beta- and alpha-cell composition and accelerated the development of delta cells. Additionally, beta cells of Nec-1-treated islets had a significant upregulation in GLUT2 expression. The enhanced development of major endocrine cells and GLUT2 expression after Nec-1 treatment subsequently led to a significant increase in the amount of insulin secreted in response to in vitro glucose challenge. Islet recovery, viability, and oxygen consumption rate were unaffected by Nec-1. CONCLUSION: This study underlines the importance of necroptosis in islet cell death after isolation and demonstrates the novel effects of Nec-1 to increase islet insulin content, enhance pancreatic endocrine cell development, facilitate GLUT2 upregulation in beta cells, and augment insulin secretion. Nec-1 supplementation to culture media significantly improves islet quality prior to xenotransplantation.


Asunto(s)
Separación Celular/métodos , Transportador de Glucosa de Tipo 2/metabolismo , Imidazoles/metabolismo , Indoles/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Islotes Pancreáticos/fisiología , Animales , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Suplementos Dietéticos , Transportador de Glucosa de Tipo 2/genética , Humanos , Insulina/metabolismo , Necroptosis , Consumo de Oxígeno , Porcinos , Trasplante Heterólogo , Regulación hacia Arriba
9.
Xenotransplantation ; 27(1): e12554, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31495985

RESUMEN

INTRODUCTION: Islet recovery from within alginate-based microcapsules is necessary for certain analytical assays like flow cytometry; however, this technology has not been widely characterized. In this study, we explore the ability of EDTA, EGTA, and sodium citrate to induce reverse alginate polymerization via chelation and assess the toxicity of each chelator on pancreatic islets. METHODS: EDTA, EGTA, and sodium citrate were used to dissolve single-layered Ba2+ alginate encapsulated islets and the rate of capsule breakdown calculated from analysis of imaging data. The effect of chelator exposure on islet viability and recovery was assessed using flow cytometry, while glucose-stimulated insulin release (GSIR) assay was used to measure effects on islet function. RESULTS: EGTA demonstrated the most rapid microcapsule dissolving rate followed by EDTA and sodium citrate. Islet recovery was significantly better when encapsulated islets were treated with EDTA than EGTA and Na+ citrate. A decrease in viability and increase in apoptotic cells were observed when encapsulated islets were treated with Na+ citrate compared to islets treated with EDTA and EGTA. Islets treated with EDTA and EGTA demonstrated comparable stimulation index values to non-treated control. Conversely, islets treated with Na+ citrate exhibited significantly decreased SI values compared to control. All chelator groups showed significantly lower insulin secretion than non-treated islets. CONCLUSION: Islet recovery from alginate microcapsule is possible using common chelators like Na+ citrate, EDTA, and EGTA. Chelation of encapsulated islets using EDTA demonstrated the most efficient dissolving capabilities with the least toxicity toward islet recovery and health.


Asunto(s)
Cápsulas/metabolismo , Separación Celular/métodos , Quelantes/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Islotes Pancreáticos/fisiología , Alginatos/química , Animales , Apoptosis , Bario/química , Supervivencia Celular , Células Cultivadas , Citometría de Flujo , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Porcinos , Trasplante Heterólogo
10.
Small ; 15(34): e1902333, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31250985

RESUMEN

Incapability of effective cross-talk with biological environments has partly impaired the in vivo functionality of nanoparticles (NPs). Homing, biodistribution, and function of NPs could be engineered through regulating their interactions with in vivo niches. Inspired by communications in biological systems, endowing a "biological identity" to synthetic NPs is one approach to control their biodistribution, and immunonegotiation profiles. This synthetic-biological combination is referred to as biohybrid NPs, which comprise both i) engineerable, readily producible, and trackable synthetic NPs as well as ii) biological moieties with the capability to cross-talk with immunological barriers. Here, the latest understanding on the in vivo interactions of NPs, biological barriers they face, and emerging methods for quantitative measurements of NPs' biodistribution are reviewed. Some key biomolecules that have emerged as negotiators with the immune system in the context of cancer and autoimmunity, and their inspirations on biohybrid NPs are introduced. Critical design considerations for efficient cross-talk between NPs and innate and adaptive immunity followed by hybridization methods are also discussed. Finally, clinical translation challenges and future perspectives regarding biohybrid NPs are discussed.


Asunto(s)
Nanopartículas/química , Animales , Técnicas de Transferencia de Gen , Humanos , Inmunidad/efectos de los fármacos , Nanopartículas/toxicidad , Fagocitos/citología , Fagocitos/efectos de los fármacos , Medicina de Precisión , Distribución Tisular/efectos de los fármacos
11.
Cell Tissue Res ; 378(2): 155-162, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31209568

RESUMEN

In recent years, human umbilical cord blood has emerged as a rich source of stem, stromal and immune cells for cell-based therapy. Among the stem cells from umbilical cord blood, CD45+ multipotent stem cells and CD90+ mesenchymal stem cells have the potential to treat type I diabetes mellitus (T1DM), to correct autoimmune dysfunction and replenish ß-cell numbers and function. In this review, we compare the general characteristics of umbilical cord blood-derived multipotent stem cells (UCB-SCs) and umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) and introduce their applications in T1DM. Although there are some differences in surface marker expression between UCB-SCs and UCB-MSCs, the two cell types display similar functions such as suppressing function of stimulated lymphocytes and imparting differentiation potential to insulin-producing cells (IPCs) in the setting of low immunogenicity, thereby providing a promising and safe approach for T1DM therapy.


Asunto(s)
Diabetes Mellitus Tipo 1/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Cordón Umbilical/citología , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Humanos , Células Secretoras de Insulina/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratas
12.
Ann Plast Surg ; 83(5): 583-588, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31232817

RESUMEN

PURPOSE: The preservation of transplantable tissue is directly tied to and limited by the ischemia time. Micro/nanobubbles (MNBs) are miniature gaseous voids that allow for the oxygenation of tissue given their high oxygen-carrying capacity. One of the current limitations of islet cell transplantation for type 1 diabetes is poor islet survival, caused by hypoxia, after harvesting the cells from pancreata. As such, the purpose of this study was to elucidate whether MNBs, when added to standard culture medium, improve islet cell survival postharvest. MATERIALS AND METHODS: Islet cells were harvested from Sprague-Dawley rat pancreas tissue via a standard collagenase digestion and gradient purification. To create the MNB solution, a shear-based generation system was used to produce both air- and oxygen-filled MNBs in standard Connaught Medical Research Laboratories (CMRL) medium. Four groups, consisting of 500 islet equivalents, were cultured with either the standard CMRL medium, macrobubble-CMRL, MNB (air)-CMRL, or MNB (O2)-CMRL, and they were incubated at 37°C. Each treatment solution was replenished 24 hours postincubation, and after 48 hours of culture, dithizone staining was used to determine the islet cell counts, and the viability was assessed using Calcein AM/propidium iodide staining. RESULTS: Islet cells that were preserved in macrobubble-CMRL, MNB (air)-CMRL, and MNB (O2)-CMRL conditions showed an increased survival compared with those cultured with standard CMRL. The islet cells cultured in the MNB (air)-CMRL condition demonstrated the greatest cell survival compared with all other groups, including the pure oxygen-carrying MNBs. None of the MNB treatments significantly altered the viability of the islet cells compared to the control condition. CONCLUSIONS: The addition of MNBs to culture medium offers an innovative approach for the oxygenation of transplantable tissue, such as islet cells. This study demonstrated that MNBs filled with air provided the most optimal addition to the islet cell culture medium for improving islet cell survival amongst the treatment groups we tested. Given these findings, we hypothesize that MNBs may also improve the oxygenation and survival of a variety of other tissues, including fat grafts from lipoaspirate, chronic wounds, and solid organs.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos/citología , Microburbujas , Nanoestructuras , Animales , Supervivencia Celular , Células Cultivadas , Masculino , Ratas , Ratas Sprague-Dawley
13.
Curr Ther Res Clin Exp ; 90: 61-67, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31193369

RESUMEN

BACKGROUND: Traditional insulin treatment for diabetes mellitus with insulin administered subcutaneously yields nonpulsatile plasma insulin concentrations that represent a fraction of normal portal vein levels. Oral hypoglycemic medications result in the same lack of pulsatile insulin response to blood glucose levels. Intensive treatments of significant complications of diabetes are not recommended due to complicated multidrug regimens, significant weight gain, and the high risk of hypoglycemic complications. Consequently, advanced complications of diabetes do not have an effective treatment option because conventional therapy is not sufficient. Intensive insulin therapy (IIT) simulates normal pancreatic function by closely matching the periodicity and amplitude of insulin secretion in healthy subjects; however, the mechanisms involved with the observed improvement are not clearly understood. OBJECTIVE: The current review aims to analyze the pathophysiology of insulin secretion, discuss current therapies for the management of diabetes, provides an updates on the recent advancements of IIT, and proposes its mechanism of action. METHODS: A literature search on PubMed, MEDLINE, Embase, and CrossRef databases was performed on multiple key words regarding the history and current variations of pulsatile and IIT for diabetes treatment. Articles reporting the physiology of insulin secretion, advantages of pulsatile insulin delivery in patients with diabetes patients, efficacy and adverse effects of current conventional insulin therapies for the management of diabetes, benefits and shortcomings of pancreas and islet transplantation, or clinical trials on patients with diabetes treated with pulsed insulin therapy or advanced IIT were included for a qualitative analysis and categorized into the following topics: mechanism of insulin secretion in normal subjects and patients with diabetes and current therapies for the management of diabetes, including oral hypoglycemic agents, insulin therapy, pancreas and islet transplantation, pulsed insulin therapy, and advances in IIT. RESULTS: Our review of the literature shows that IIT improves the resolution of diabetic ulcers, neuropathy, and nephropathy, and reduces emergency room visits. The likely mechanism responsible for this improvement is increased insulin sensitivity from adipocytes, as well as increased insulin receptor expression. CONCLUSIONS: Recent advancements show that IIT is an effective option for both type 1 diabetes mellitus and type 2 diabetes mellitus patient populations. This treatment resembles normal pancreatic function so closely that it has significantly reduced the effects of relatively common complications of diabetes in comparison to standard treatments. Thus, this new treatment is a promising advancement in the management of diabetes. (Curr Ther Res Clin Exp. 2019; 80:XXX-XXX).

14.
Int Wound J ; 16(1): 144-152, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30273979

RESUMEN

Major complications of diabetes lead to inflammation and oxidative stress, delayed wound healing, and persistent ulcers. The high morbidity, mortality rate, and associated costs of management suggest a need for non-invasive methods that will enable the early detection of at-risk tissue. We have compared the wound-healing process that occurs in streptozotocin (STZ)-treated diabetic rats with non-diabetic controls using contrast changes in colour photography (ie, Weber Contrast) and the non-invasive optical method Spatial Frequency Domain Imaging (SFDI). This technology can be used to quantify the structural and metabolic properties of in-vivo tissue by measuring oxyhaemoglobin concentration (HbO2 ), deoxyhaemoglobin concentration (Hb), and oxygen saturation (StO2 ) within the visible boundaries of each wound. We also evaluated the changes in inducible nitric oxide synthase (iNOS) in the dermis using immunohistochemistry. Contrast changes in colour photographs showed that diabetic rats healed at a slower rate in comparison with non-diabetic control, with the most significant change occurring at 7 days after the punch biopsy. We observed lower HbO2 , StO2 , and elevated Hb concentrations in the diabetic wounds. The iNOS level was higher in the dermis of the diabetic rats compared with the non-diabetic rats. Our results showed that, in diabetes, there is higher level of iNOS that can lead to an observed reduction in HbO2 levels. iNOS is linked to increased inflammation, leading to prolonged wound healing. Our results suggest that SFDI has potential as a non-invasive assessment of markers of wound-healing impairment.


Asunto(s)
Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/fisiopatología , Inmunohistoquímica/métodos , Flujometría por Láser-Doppler/métodos , Estreptozocina/efectos adversos , Heridas y Lesiones/diagnóstico por imagen , Heridas y Lesiones/fisiopatología , Animales , Masculino , Ratas , Cicatrización de Heridas/fisiología
15.
Am J Transplant ; 18(9): 2113-2119, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29790274

RESUMEN

Pancreatic-islet transplantation is a safe and noninvasive therapy for type 1 diabetes. However, the currently applied site for transplantation, ie, the liver, is not the optimal site for islet survival. Because the human body has shortcomings in providing an optimal site, artificial transplantation sites have been proposed. Such an artificial site could consist of a polymeric scaffold that mimics the pancreatic microenvironment and supports islet function. Recently, remarkable progress has been made in the technology of engineering scaffolds. The polymer-islet interactions, the site of implantation, and scaffold prevascularization are critical factors for success or failure of the scaffolds. This article critically reviews these factors while also discussing translation of experimental studies to human application as well as the steps required to create a clinically applicable prevascularized, retrievable scaffold for implantation of insulin-producing cells for treatment of type 1 diabetes mellitus.


Asunto(s)
Diabetes Mellitus Tipo 1/terapia , Supervivencia de Injerto , Trasplante de Islotes Pancreáticos/métodos , Islotes Pancreáticos/citología , Polímeros/química , Andamios del Tejido/química , Animales , Humanos
16.
Xenotransplantation ; 25(6): e12432, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30052287

RESUMEN

BACKGROUND: There is currently a shortage of human donor pancreata which limits the broad application of islet transplantation as a treatment for type 1 diabetes. Porcine islets have demonstrated potential as an alternative source, but a study evaluating islets from different donor ages under unified protocols has yet to be conducted. METHODS: Neonatal porcine islets (NPI; 1-3 days), juvenile porcine islets (JPI; 18-21 days), and adult porcine islets (API; 2+ years) were compared in vitro, including assessments of oxygen consumption rate, membrane integrity determined by FDA/PI staining, ß-cell proliferation, dynamic glucose-stimulated insulin secretion, and RNA sequencing. RESULTS: Oxygen consumption rate normalized to DNA was not significantly different between ages. Membrane integrity was age dependent, and API had the highest percentage of intact cells. API also had the highest glucose-stimulated insulin secretion response during a dynamic insulin secretion assay and had 50-fold higher total insulin content compared to NPI and JPI. NPI and JPI had similar glucose responsiveness, ß-cell percentage, and ß-cell proliferation rate. Transcriptome analysis was consistent with physiological assessments. API transcriptomes were enriched for cellular metabolic and insulin secretory pathways, while NPI exhibited higher expression of genes associated with proliferation. CONCLUSIONS: The oxygen demand, membrane integrity, ß-cell function and proliferation, and transcriptomes of islets from API, JPI, and NPI provide a comprehensive physiological comparison for future studies. These assessments will inform the optimal application of each age of porcine islet to expand the availability of islet transplantation.


Asunto(s)
Supervivencia de Injerto/inmunología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Consumo de Oxígeno/fisiología , Animales , Animales Recién Nacidos , Diabetes Mellitus Experimental/terapia , Rechazo de Injerto/inmunología , Células Secretoras de Insulina/inmunología , Trasplante de Islotes Pancreáticos/métodos , Páncreas/inmunología , Páncreas/metabolismo , Porcinos , Transcriptoma/inmunología , Trasplante Heterólogo/métodos
17.
Xenotransplantation ; 22(5): 356-67, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26381493

RESUMEN

BACKGROUND: During the process of islet isolation, pancreatic enzymes are activated and released, adversely affecting islet survival and function. We hypothesize that the exocrine component of pancreases harvested from pre-weaned juvenile pigs is immature and hence pancreatic tissue from these donors is protected from injury during isolation and prolonged tissue culture. METHODS: Biopsy specimens taken from pancreases harvested from neonatal (5-10 days), pre-weaned juvenile (18-22 days), weaned juvenile (45-60 days), and young adult pigs (>90 days) were fixed and stained with hematoxylin and eosin. Sections were examined under a fluorescent microscope to evaluate exocrine zymogen fluorescence intensity (ZFI) and under an electron microscope to evaluate exocrine zymogen granule density (ZGD). RESULTS: Exocrine content estimation showed significantly lower ZFI and ZGD in juvenile pig pancreases (1.5 ± 0.04 U/µm(2) , ZFI; 1.03 ± 0.07 × 10(3) /100 µm(2) , ZGD) compared to young adult pigs (2.4 ± 0.05U/µm(2) , ZFI; 1.53 ± 0.08 × 10(3) /100 µm(2) ZGD). Islets in juvenile pig pancreases were on average smaller (105.2 ± 11.2 µm) than islets in young adult pigs (192 ± 7.7 µm), but their insulin content was comparable (80.9 ± 2.2% juvenile; 84.2 ± 0.3% young adult, P > 0.05). All data expressed as mean ± SEM. CONCLUSION: Porcine islet xenotransplantation continues to make strides toward utilization in clinical trials of type 1 diabetes. Porcine donor age and weaning status influence the extent of exocrine maturation of the pancreas. Juvenile porcine pancreases may represent an alternative donor source for islet xenotransplantation as their exocrine component is relatively immature; this preserves islet viability during extended tissue culture following isolation.


Asunto(s)
Trasplante de Islotes Pancreáticos/métodos , Páncreas/crecimiento & desarrollo , Recolección de Tejidos y Órganos/métodos , Trasplante Heterólogo , Destete , Factores de Edad , Animales , Masculino , Páncreas/anatomía & histología , Páncreas/cirugía , Vesículas Secretoras , Porcinos
19.
Nat Med ; 12(3): 310-6, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16491084

RESUMEN

The nature and even existence of adult pancreatic endocrine stem or progenitor cells is a subject of controversy in the field of beta-cell replacement for diabetes. One place to search for such cells is in the nonendocrine fraction of cells that remain after islet isolation, which consist of a mixture of epithelia and mesenchyme. Culture in G418 resulted in elimination of the mesenchymal cells, leaving a highly purified population of nonendocrine pancreatic epithelial cells (NEPECs). To evaluate their differentiation potential, NEPECs were heritably marked and transplanted under the kidney capsule of immunodeficient mice. When cotransplanted with fetal pancreatic cells, NEPECs were capable of endocrine differentiation. We found no evidence of beta-cell replication or cell fusion that could have explained the appearance of insulin positive cells from a source other than NEPECs. Nonendocrine-to-endocrine differentiation of NEPECs supports the existence of endocrine stem or progenitor cells within the epithelial compartment of the adult human pancreas.


Asunto(s)
Diferenciación Celular , Células Epiteliales/citología , Islotes Pancreáticos/citología , Adulto , Animales , Fusión Celular , Trasplante de Células , Tratamiento Basado en Trasplante de Células y Tejidos , Células Cultivadas , Replicación del ADN , Células Epiteliales/metabolismo , Feto/citología , Gentamicinas/farmacología , Humanos , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Mesodermo/citología , Mesodermo/efectos de los fármacos , Ratones , Ratones SCID , Persona de Mediana Edad
20.
Polymers (Basel) ; 15(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36904554

RESUMEN

Long term function of implantable biomaterials are determined by their integration with the host's body. Immune reactions against these implants could impair the function and integration of the implants. Some biomaterial-based implants lead to macrophage fusion and the formation of multinucleated giant cells, also known as foreign body giant cells (FBGCs). FBGCs may compromise the biomaterial performance and may lead to implant rejection and adverse events in some cases. Despite their critical role in response to implants, there is a limited understanding of cellular and molecular mechanisms involved in forming FBGCs. Here, we focused on better understanding the steps and mechanisms triggering macrophage fusion and FBGCs formation, specifically in response to biomaterials. These steps included macrophage adhesion to the biomaterial surface, fusion competency, mechanosensing and mechanotransduction-mediated migration, and the final fusion. We also described some of the key biomarkers and biomolecules involved in these steps. Understanding these steps on a molecular level would lead to enhance biomaterials design and improve their function in the context of cell transplantation, tissue engineering, and drug delivery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA