Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Adv Exp Med Biol ; 1389: 317-348, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36350516

RESUMEN

The malignant transformation of normal cells is driven by both genetic and epigenetic changes. With the advent of next-generation sequencing and large-scale international consortia, it is now possible to profile the genomes and epigenomes of thousands of primary tumors from nearly every cancer type. These studies clearly demonstrate that the dynamic regulation of DNA methylation is a critical epigenetic mechanism of cancer initiation, maintenance, and progression. Proper control of DNA methylation is not only crucial for regulating gene transcription and tissue-specific cellular functions, but its broader consequences include maintaining the integrity of the genome and modulating the immune response. Here, we describe the aberrant DNA methylation changes in human cancers and how they contribute to the disease phenotypes. Aside from CpG island promoter DNA hypermethylation-based gene silencing, human cancers also display gene body DNA hypomethylation that is also associated with downregulated gene expression. In addition, the implementation of whole genome bisulfite sequencing (WGBS) has unveiled DNA hypomethylation of large blocks of the genome, known as partially methylated domains (PMDs), as well as cancer-specific DNA methylation aberrancies at enhancers and super-enhancers. Integrating WGBS and DNA methylation array data with mutation, copy number, and gene expression data has allowed for the identification of novel tumor suppressor genes and candidate driver genes of the disease state. Finally, we highlight potential clinical implications of these changes in the context of prognostic and diagnostic biomarkers, as well as therapeutic targets. Mounting evidence shows that DNA methylation data are effective and highly-sensitive disease classifiers, not only from analyses of the primary tumor but also from tumor-derived, cell free DNA (cfDNA) in blood of cancer patients. These findings highlight the power of DNA methylation aberrancies in providing efficacious biomarkers for clinical utility in improving patient diagnostics and their reversal using DNA methylation inhibitors in cancer treatment may be key in surveillance, treatment, and quality of life for cancer patients.


Asunto(s)
Metilación de ADN , Neoplasias , Humanos , Metilación de ADN/genética , Calidad de Vida , Islas de CpG/genética , Epigénesis Genética/genética , Metilasas de Modificación del ADN/genética , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patología , Regulación Neoplásica de la Expresión Génica
2.
Int J Cancer ; 146(11): 3065-3076, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32017074

RESUMEN

Highly tumorigenic, drug-resistant cancer stem-like cells drive cancer progression. These aggressive cells can arise repeatedly from bulk tumor cells independently of mutational events, suggesting an epigenetic mechanism. To test this possibility, we studied bladder cancer cells as they cyclically shifted to and from a cancer stem-like phenotype, and we discovered that these two states exhibit distinct DNA methylation and chromatin accessibility. Most differential chromatin accessibility was independent of methylation and affected the expression of driver genes such as E2F3, a cell cycle regulator associated with aggressive bladder cancer. Cancer stem-like cells exhibited increased E2F3 promoter accessibility and increased E2F3 expression that drove cell migration, invasiveness and drug resistance. Epigenetic interference using a DNA methylation inhibitor blocked the transition to a cancer stem-like state and reduced E2F3 expression. Our findings indicate that epigenetic plasticity plays a key role in the transition to and from an aggressive, drug-resistant phenotype.


Asunto(s)
Plasticidad de la Célula/genética , Metilación de ADN/genética , Factor de Transcripción E2F3/genética , Células Madre Neoplásicas/patología , Neoplasias de la Vejiga Urinaria/genética , Línea Celular Tumoral , Movimiento Celular/genética , Cromatina/metabolismo , Resistencia a Antineoplásicos/genética , Factor de Transcripción E2F3/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Invasividad Neoplásica/genética , Células Madre Neoplásicas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Neoplasias de la Vejiga Urinaria/patología
3.
Adv Exp Med Biol ; 945: 151-172, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27826838

RESUMEN

The malignant transformation of normal cells is driven by both genetic and epigenetic changes. With the advent of next-generation sequencing and large-scale multinational consortium studies, it has become possible to profile the genomes and epigenomes of thousands of primary tumors from nearly every cancer type. From these genome-wide studies, it became clear that the dynamic regulation of DNA methylation is a critical epigenetic mechanism of cancer initiation, maintenance, and progression. Proper control of DNA methylation is not only crucial for regulating gene transcription, but its broader consequences include maintaining the integrity of the genome and modulating immune response. Here, we describe the aberrant DNA methylation changes that take place in cancer and how they contribute to the disease phenotype. Further, we highlight potential clinical implications of these changes in the context of prognostic and diagnostic biomarkers, as well as therapeutic targets.


Asunto(s)
Biomarcadores de Tumor/genética , Transformación Celular Neoplásica/genética , Metilación de ADN/genética , Neoplasias/genética , Epigénesis Genética , Genoma Humano , Humanos , Neoplasias/diagnóstico , Neoplasias/patología , Regiones Promotoras Genéticas
4.
Cancer Lett ; 401: 11-19, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28483516

RESUMEN

The chromatin remodeler AT-Rich Interactive Domain 1A (ARID1A) is frequently mutated in ovarian clear cell carcinoma (OCCC) and endometriosis precursor lesions. Here, we show that knocking down ARID1A in an immortalized endometriosis cell line is sufficient to induce phenotypic changes indicative of neoplastic transformation as evidenced by higher efficiency of anchorage-independent growth, increased propensity to adhere to collagen, and greater capacity to invade basement membrane extract in vitro. ARID1A knockdown is associated with expression dysregulation of 99 target genes, and many of these expression changes are also observed in primary OCCC tissues. Further, pathway analysis indicates these genes fall within networks highly relevant to tumorigenesis including integrin and paxillin pathways. We demonstrate that the down-regulation of ARID1A does not markedly alter global chromatin accessibility or DNA methylation but unexpectedly, we find strong increases in the active H3K27ac mark in promoter regions and decreases of H3K27ac at potential enhancers. Taken together, these data provide evidence that ARID1A mutation can be an early stage event in the oncogenic transformation of endometriosis cells giving rise to OCCC.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Reprogramación Celular , Endometriosis/metabolismo , Endometrio/metabolismo , Epigénesis Genética , Proteínas Nucleares/metabolismo , Neoplasias Ováricas/metabolismo , Factores de Transcripción/metabolismo , Adhesión Celular , Línea Celular , Movimiento Celular , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Ensamble y Desensamble de Cromatina , Metilación de ADN , Proteínas de Unión al ADN , Regulación hacia Abajo , Endometriosis/genética , Endometriosis/patología , Endometrio/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Masculino , Proteínas Nucleares/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Fenotipo , Regiones Promotoras Genéticas , Interferencia de ARN , Transducción de Señal , Factores de Transcripción/genética , Transfección
5.
Genome Biol ; 18(1): 3, 2017 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-28081708

RESUMEN

BACKGROUND: Slow-growing prostate cancer (PC) can be aggressive in a subset of cases. Therefore, prognostic tools to guide clinical decision-making and avoid overtreatment of indolent PC and undertreatment of aggressive disease are urgently needed. PC has a propensity to be multifocal with several different cancerous foci per gland. RESULTS: Here, we have taken advantage of the multifocal propensity of PC and categorized aggressiveness of individual PC foci based on DNA methylation patterns in primary PC foci and matched lymph node metastases. In a set of 14 patients, we demonstrate that over half of the cases have multiple epigenetically distinct subclones and determine the primary subclone from which the metastatic lesion(s) originated. Furthermore, we develop an aggressiveness classifier consisting of 25 DNA methylation probes to determine aggressive and non-aggressive subclones. Upon validation of the classifier in an independent cohort, the predicted aggressive tumors are significantly associated with the presence of lymph node metastases and invasive tumor stages. CONCLUSIONS: Overall, this study provides molecular-based support for determining PC aggressiveness with the potential to impact clinical decision-making, such as targeted biopsy approaches for early diagnosis and active surveillance, in addition to focal therapy.


Asunto(s)
Metilación de ADN , Epigenómica/métodos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Sitios de Carácter Cuantitativo , Biomarcadores de Tumor , Biopsia , Análisis por Conglomerados , Progresión de la Enfermedad , Epigénesis Genética , Perfilación de la Expresión Génica , Humanos , Metástasis Linfática , Masculino , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Neoplasias de la Próstata/cirugía , Reproducibilidad de los Resultados , Transcriptoma , Carga Tumoral
6.
Nat Cell Biol ; 18(6): 607-18, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27111842

RESUMEN

Haematopoietic stem cells (HSCs) maintain lifelong blood production and increase blood cell numbers in response to chronic and acute injury. However, the mechanism(s) by which inflammatory insults are communicated to HSCs and their consequences for HSC activity remain largely unknown. Here, we demonstrate that interleukin-1 (IL-1), which functions as a key pro-inflammatory 'emergency' signal, directly accelerates cell division and myeloid differentiation of HSCs through precocious activation of a PU.1-dependent gene program. Although this effect is essential for rapid myeloid recovery following acute injury to the bone marrow, chronic IL-1 exposure restricts HSC lineage output, severely erodes HSC self-renewal capacity, and primes IL-1-exposed HSCs to fail massive replicative challenges such as transplantation. Importantly, these damaging effects are transient and fully reversible on IL-1 withdrawal. Our results identify a critical regulatory circuit that tailors HSC responses to acute needs, and is likely to underlie deregulated blood homeostasis in chronic inflammation conditions.


Asunto(s)
Médula Ósea/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Hematopoyesis/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Interleucina-1/farmacología , Animales , Trasplante de Médula Ósea , División Celular/efectos de los fármacos , Linaje de la Célula/genética , Células Madre Hematopoyéticas/citología , Ratones
7.
Cell Rep ; 17(2): 596-608, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27705804

RESUMEN

Aberrant DNA methylation patterns in malignant cells allow insight into tumor evolution and development and can be used for disease classification. Here, we describe the genome-wide DNA methylation signatures of NPM-ALK-positive (ALK+) and NPM-ALK-negative (ALK-) anaplastic large-cell lymphoma (ALCL). We find that ALK+ and ALK- ALCL share common DNA methylation changes for genes involved in T cell differentiation and immune response, including TCR and CTLA-4, without an ALK-specific impact on tumor DNA methylation in gene promoters. Furthermore, we uncover a close relationship between global ALCL DNA methylation patterns and those in distinct thymic developmental stages and observe tumor-specific DNA hypomethylation in regulatory regions that are enriched for conserved transcription factor binding motifs such as AP1. Our results indicate similarity between ALCL tumor cells and thymic T cell subsets and a direct relationship between ALCL oncogenic signaling and DNA methylation through transcription factor induction and occupancy.


Asunto(s)
Metilación de ADN/genética , Genoma Humano/genética , Linfoma Anaplásico de Células Grandes/genética , Proteínas Tirosina Quinasas/genética , Adolescente , Adulto , Anciano , Diferenciación Celular/genética , Línea Celular Tumoral , Niño , Femenino , Humanos , Activación de Linfocitos/genética , Linfoma Anaplásico de Células Grandes/patología , Masculino , Persona de Mediana Edad , Transducción de Señal , Adulto Joven
8.
J Exp Med ; 211(2): 245-62, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24493802

RESUMEN

Type I interferons (IFN-1s) are antiviral cytokines that suppress blood production while paradoxically inducing hematopoietic stem cell (HSC) proliferation. Here, we clarify the relationship between the proliferative and suppressive effects of IFN-1s on HSC function during acute and chronic IFN-1 exposure. We show that IFN-1-driven HSC proliferation is a transient event resulting from a brief relaxation of quiescence-enforcing mechanisms in response to acute IFN-1 exposure, which occurs exclusively in vivo. We find that this proliferative burst fails to exhaust the HSC pool, which rapidly returns to quiescence in response to chronic IFN-1 exposure. Moreover, we demonstrate that IFN-1-exposed HSCs with reestablished quiescence are largely protected from the killing effects of IFNs unless forced back into the cell cycle due to culture, transplantation, or myeloablative treatment, at which point they activate a p53-dependent proapoptotic gene program. Collectively, our results demonstrate that quiescence acts as a safeguard mechanism to ensure survival of the HSC pool during chronic IFN-1 exposure. We show that IFN-1s can poise HSCs for apoptosis but induce direct cell killing only upon active proliferation, thereby establishing a mechanism for the suppressive effects of IFN-1s on HSC function.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/fisiología , Interferón Tipo I/fisiología , Animales , Apoptosis/efectos de los fármacos , Médula Ósea/efectos de los fármacos , Médula Ósea/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Hematopoyesis/efectos de los fármacos , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/efectos de los fármacos , Interferón Tipo I/administración & dosificación , Masculino , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Noqueados , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Transducción de Señal , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA