RESUMEN
While most of the efforts to uncover mechanisms contributing to bipolar disorder (BD) focused on phenotypes at the mature neuron stage, little research has considered events that may occur during earlier timepoints of neurodevelopment. Further, although aberrant calcium (Ca2+) signaling has been implicated in the etiology of this condition, the possible contribution of store-operated Ca2+ entry (SOCE) is not well understood. Here, we report Ca2+ and developmental dysregulations related to SOCE in BD patient induced pluripotent stem cell (iPSC)-derived neural progenitor cells (BD-NPCs) and cortical-like glutamatergic neurons. First, using a Ca2+ re-addition assay we found that BD-NPCs and neurons had attenuated SOCE. Intrigued by this finding, we then performed RNA-sequencing and uncovered a unique transcriptome profile in BD-NPCs suggesting accelerated neurodifferentiation. Consistent with these results, we measured a slower rate of proliferation, increased neurite outgrowth, and decreased size in neurosphere formations with BD-NPCs. Also, we observed decreased subventricular areas in developing BD cerebral organoids. Finally, BD NPCs demonstrated high expression of the let-7 family while BD neurons had increased miR-34a, both being microRNAs previously implicated in neurodevelopmental deviations and BD etiology. In summary, we present evidence supporting an accelerated transition towards the neuronal stage in BD-NPCs that may be indicative of early pathophysiological features of the disorder.
RESUMEN
Activity-regulated cytoskeleton-associated protein (Arc) is an immediate early gene product that support neuroplastic changes important for cognitive function and memory formation. As a protein with homology to the retroviral Gag protein, a particular characteristic of Arc is its capacity to self-assemble into virus-like capsids that can package mRNAs and transfer those transcripts to other cells. Although a lot has been uncovered about the contributions of Arc to neuron biology and behavior, very little is known about how different functions of Arc are coordinately regulated both temporally and spatially in neurons. The answer to this question we hypothesized must involve the occurrence of different protein post-translational modifications acting to confer specificity. In this study, we used mass spectrometry and sequence prediction strategies to map novel Arc phosphorylation sites. Our approach led us to recognize serine 67 (S67) and threonine 278 (T278) as residues that can be modified by TNIK, which is a kinase abundantly expressed in neurons that shares many functional overlaps with Arc and has, along with its interacting proteins such as the NMDA receptor, and been implicated as a risk factor for psychiatric disorders. Furthermore, characterization of each residue using site-directed mutagenesis to create S67 and T278 mutant variants revealed that TNIK action at those amino acids can strongly influence Arc's subcellular distribution and self-assembly as capsids. Together, our findings reveal an unsuspected connection between Arc and TNIK. Better understanding of the interplay between these two proteins in neuronal cells could lead to new insights about apparition and progression of psychiatric disorders. Cover Image for this issue: https://doi.org/10.1111/jnc.15077.
Asunto(s)
Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Ratones , Neuronas/metabolismo , Fosforilación/fisiologíaRESUMEN
The X-linked neurodevelopmental diseases CDKL5 deficiency disorder (CDD) and Rett syndrome (RTT) are associated with intellectual disability, infantile spasms and seizures. Although mitochondrial dysfunction has been suggested in RTT, less is understood about mitochondrial function in CDD. A comparison of bioenergetics and mitochondrial function between isogenic wild-type and mutant neural progenitor cell (NPC) lines revealed increased oxygen consumption in CDD mutant lines, which is associated with altered mitochondrial function and structure. Transcriptomic analysis revealed differential expression of genes related to mitochondrial and REDOX function in NPCs expressing the mutant CDKL5. Furthermore, a similar increase in oxygen consumption specific to RTT patient-derived isogenic mutant NPCs was observed, though the pattern of mitochondrial functional alterations was distinct from CDKL5 mutant-expressing NPCs. We propose that aberrant neural bioenergetics is a common feature between CDD and RTT disorders. The observed changes in oxidative stress and mitochondrial function may facilitate the development of therapeutic agents for CDD and related disorders.
Asunto(s)
Síndromes Epilépticos/metabolismo , Mitocondrias/metabolismo , Síndrome de Rett/metabolismo , Espasmos Infantiles/metabolismo , Adulto , Células Cultivadas , Preescolar , Metabolismo Energético , Síndromes Epilépticos/genética , Femenino , Humanos , Mitocondrias/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Estrés Oxidativo , Oxígeno/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Síndrome de Rett/genética , Espasmos Infantiles/genéticaRESUMEN
Although circular RNAs (circRNAs) are enriched in the mammalian brain, very little is known about their potential involvement in brain function and psychiatric disease. Here, we show that circHomer1a, a neuronal-enriched circRNA abundantly expressed in the frontal cortex, derived from Homer protein homolog 1 (HOMER1), is significantly reduced in both the prefrontal cortex (PFC) and induced pluripotent stem cell-derived neuronal cultures from patients with schizophrenia (SCZ) and bipolar disorder (BD). Moreover, alterations in circHomer1a were positively associated with the age of onset of SCZ in both the dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC). No correlations between the age of onset of SCZ and linear HOMER1 mRNA were observed, whose expression was mostly unaltered in BD and SCZ postmortem brain. Using in vivo circRNA-specific knockdown of circHomer1a in mouse PFC, we show that it modulates the expression of numerous alternative mRNA transcripts from genes involved in synaptic plasticity and psychiatric disease. Intriguingly, in vivo circHomer1a knockdown in mouse OFC resulted in specific deficits in OFC-mediated cognitive flexibility. Lastly, we demonstrate that the neuronal RNA-binding protein HuD binds to circHomer1a and can influence its synaptic expression in the frontal cortex. Collectively, our data uncover a novel psychiatric disease-associated circRNA that regulates synaptic gene expression and cognitive flexibility.
Asunto(s)
Trastorno Bipolar/genética , Cognición , Regulación de la Expresión Génica , ARN Circular/genética , Esquizofrenia/genética , Sinapsis/metabolismo , Adulto , Animales , Femenino , Proteínas de Andamiaje Homer/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Corteza Prefrontal/metabolismoRESUMEN
Glioblastoma multiforme (GBM) is amongst the deadliest of human cancers, with a median survival rate of just over one year following diagnosis. Characterized by rapid proliferation and diffuse infiltration into the brain, GBM is notoriously difficult to treat, with tumor cells showing limited response to existing therapies and eventually developing resistance to these interventions. As such, there is intense interest in better understanding the molecular alterations in GBM to guide the development of more efficient targeted therapies. GBM tumors can be classified into several molecular subtypes which have distinct genetic signatures, and they show aberrant activation of numerous signal transduction pathways, particularly those connected to receptor tyrosine kinases (RTKs) which control glioma cell growth, survival, migration, invasion, and angiogenesis. There are also non-canonical modes of RTK signaling found in GBM, which involve G-protein-coupled receptors and calcium channels. This review uses The Cancer Genome Atlas (TCGA) GBM dataset in combination with a data-mining approach to summarize disease characteristics, with a focus on select molecular pathways that drive GBM pathogenesis. We also present a unique genomic survey of RTKs that are frequently altered in GBM subtypes, as well as catalog the GBM disease association scores for all RTKs. Lastly, we discuss current RTK targeted therapies and highlight emerging directions in GBM research.
Asunto(s)
Neoplasias Encefálicas/enzimología , Proliferación Celular , Glioblastoma/enzimología , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/patología , Humanos , Proteínas de Neoplasias/genética , Fosforilación/genética , Proteínas Tirosina Quinasas Receptoras/genéticaRESUMEN
Cortical circuit dysfunction is thought to be an underlying mechanism of schizophrenia (SZ) pathophysiology with normalization of aberrant circuit activity proposed as a biomarker for antipsychotic efficacy. Cannabidiol (CBD) shows potential as an adjunctive antipsychotic therapy; however, potential sex effects in these drug interactions remain unknown. In the present study, we sought to elucidate sex effects of CBD coadministration with the atypical antipsychotic iloperidone (ILO) on the activity of primary cortical neuron cultures derived from the rat methylazoxymethanol acetate (MAM) model used for the study of SZ. Spontaneous network activity measurements were obtained using a multielectrode array at baseline and following administration of CBD or ILO alone, or combined. At baseline, MAM male neurons displayed increased bursting activity whereas MAM female neurons exhibited no difference in bursting activity compared to sex-matched controls. CBD administered alone showed a rapid but transient increase in neuronal activity in the MAM networks, an effect more pronounced in females. Furthermore, ILO had an additive effect on CBD-induced elevations in activity in the MAM male neurons. In the MAM female neurons, CBD or ILO administration resulted in time-dependent elevations in neuronal activity, but the short-term CBD-induced increases in activity were lost when CBD and ILO were combined. Our findings indicate that CBD induces rapid increases in cortical neuronal activity, with sex-specific drug interactions upon ILO coadministration. This suggests that sex should be a consideration when implementing adjunct therapy for treatment of SZ.
Asunto(s)
Cannabidiol/farmacología , Isoxazoles/farmacología , Neuronas/efectos de los fármacos , Piperidinas/farmacología , Esquizofrenia/tratamiento farmacológico , Animales , Animales Recién Nacidos , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Cannabidiol/uso terapéutico , Técnicas de Cultivo de Célula , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Femenino , Isoxazoles/uso terapéutico , Masculino , Neuronas/fisiología , Piperidinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Esquizofrenia/fisiopatología , Caracteres SexualesRESUMEN
The molecular pathogenesis of bipolar disorder (BPD) is poorly understood. Using human-induced pluripotent stem cells (hiPSCs) to unravel such mechanisms in polygenic diseases is generally challenging. However, hiPSCs from BPD patients responsive to lithium offered unique opportunities to discern lithium's target and hence gain molecular insight into BPD. By profiling the proteomics of BDP-hiPSC-derived neurons, we found that lithium alters the phosphorylation state of collapsin response mediator protein-2 (CRMP2). Active nonphosphorylated CRMP2, which binds cytoskeleton, is present throughout the neuron; inactive phosphorylated CRMP2, which dissociates from cytoskeleton, exits dendritic spines. CRMP2 elimination yields aberrant dendritogenesis with diminished spine density and lost lithium responsiveness (LiR). The "set-point" for the ratio of pCRMP2:CRMP2 is elevated uniquely in hiPSC-derived neurons from LiR BPD patients, but not with other psychiatric (including lithium-nonresponsive BPD) and neurological disorders. Lithium (and other pathway modulators) lowers pCRMP2, increasing spine area and density. Human BPD brains show similarly elevated ratios and diminished spine densities; lithium therapy normalizes the ratios and spines. Consistent with such "spine-opathies," human LiR BPD neurons with abnormal ratios evince abnormally steep slopes for calcium flux; lithium normalizes both. Behaviorally, transgenic mice that reproduce lithium's postulated site-of-action in dephosphorylating CRMP2 emulate LiR in BPD. These data suggest that the "lithium response pathway" in BPD governs CRMP2's phosphorylation, which regulates cytoskeletal organization, particularly in spines, modulating neural networks. Aberrations in the posttranslational regulation of this developmentally critical molecule may underlie LiR BPD pathogenesis. Instructively, examining the proteomic profile in hiPSCs of a functional agent-even one whose mechanism-of-action is unknown-might reveal otherwise inscrutable intracellular pathogenic pathways.
Asunto(s)
Trastorno Bipolar , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Litio/farmacología , Modelos Biológicos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Animales , Trastorno Bipolar/genética , Trastorno Bipolar/metabolismo , Trastorno Bipolar/fisiopatología , Química Encefálica , Calcio/metabolismo , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , ProteómicaRESUMEN
BACKGROUND: Mammalian Shc (Src homology and collagen) proteins comprise a family of four phosphotyrosine adaptor molecules which exhibit varied spatiotemporal expression and signaling functions. ShcD is the most recently discovered homologue and it is highly expressed in the developing central nervous system (CNS) and adult brain. Presently however, its localization within specific cell types of mature neural structures has yet to be characterized. RESULTS: In the current study, we examine the expression profile of ShcD in the adult rat CNS using immunohistochemistry, and compare with those of the neuronally enriched ShcB and ShcC proteins. ShcD shows relatively widespread distribution in the adult brain and spinal cord, with prominent levels of staining throughout the olfactory bulb, as well as in sub-structures of the cerebellum and hippocampus, including the subgranular zone. Co-localization studies confirm the expression of ShcD in mature neurons and progenitor cells. ShcD immunoreactivity is primarily localized to axons and somata, consistent with the function of ShcD as a cytoplasmic adaptor. Regional differences in expression are observed among neural Shc proteins, with ShcC predominating in the hippocampus, cerebellum, and some fiber tracts. Interestingly, ShcD is uniquely expressed in the olfactory nerve layer and in glomeruli of the main olfactory bulb. CONCLUSIONS: Together our findings suggest that ShcD may provide a distinct signaling contribution within the olfactory system, and that overlapping expression of ShcD with other Shc proteins may allow compensatory functions in the brain.
Asunto(s)
Sistema Nervioso Central/metabolismo , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Animales , Sistema Nervioso Central/citología , Inmunohistoquímica , Masculino , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Ratas Sprague-Dawley , Proteína Transformadora 2 que Contiene Dominios de Homología 2 de Src/metabolismo , Proteína Transformadora 3 que Contiene Dominios de Homología 2 de Src/metabolismoRESUMEN
The regulation of transcription factor function in response to neuronal activity is important for development and function of the nervous system. The transcription factor Sp4 regulates the developmental patterning of dendrites, contributes to complex processes including learning and memory, and has been linked to psychiatric disorders such as schizophrenia and bipolar disorder. Despite its many roles in the nervous system, the molecular mechanisms regulating Sp4 activity are poorly understood. Here, we report a site of phosphorylation on Sp4 at serine 770 that is decreased in response to membrane depolarization. Inhibition of the voltage-dependent NMDA receptor increased Sp4 phosphorylation. Conversely, stimulation with NMDA reduced the levels of Sp4 phosphorylation, and this was dependent on the protein phosphatase 1/2A. A phosphomimetic substitution at S770 impaired the Sp4-dependent maturation of cerebellar granule neuron primary dendrites, whereas a non-phosphorylatable Sp4 mutant behaved like wild type. These data reveal that transcription factor Sp4 is regulated by NMDA receptor-dependent activation of a protein phosphatase 1/2A signaling pathway. Our findings also suggest that the regulated control of Sp4 activity is an important mechanism governing the developmental patterning of dendrites.
Asunto(s)
N-Metilaspartato/farmacología , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Factor de Transcripción Sp4/metabolismo , Animales , Calcineurina/fisiología , Inhibidores de la Calcineurina , Canales de Calcio/fisiología , Línea Celular , Cerebelo/citología , Dendritas/ultraestructura , Maleato de Dizocilpina/farmacología , Humanos , Potenciales de la Membrana/efectos de los fármacos , Mutagénesis Sitio-Dirigida , Neurogénesis , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Ácido Ocadaico/farmacología , Mutación Puntual , Cloruro de Potasio/farmacología , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteína Fosfatasa 1/fisiología , Proteína Fosfatasa 2/fisiología , Procesamiento Proteico-Postraduccional , ARN Interferente Pequeño/farmacología , Ratas , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología , Factor de Transcripción Sp4/química , TransfecciónRESUMEN
The recent development of human cerebral organoids provides an invaluable in vitro model of human brain development to assess the toxicity of natural or man-made toxic substances. By recapitulating key aspects of early human neurodevelopment, investigators can evaluate with this three-dimensional (3D) model the effect of certain compounds on the formation of neuronal networks and their electrophysiological properties with more physiological relevance than neurons grown in monolayers and in cultures composed of a unique cell type. This promising potential has contributed to the development of a large number of diverse protocols to generate human cerebral organoids, making interlaboratory comparisons of results difficult. Based on a previously published protocol to generate human cortical organoids (herein called cerebral organoids), we detail several approaches to evaluate the effect of chemicals on neurogenesis, apoptosis, and neuronal function when exogenously applied to cultured specimens. Here, we take as an example 4-aminopyridine, a potassium channel blocker that modulates the activity of neurons and neurogenesis, and describe a simple and cost-effective way to test the impact of this agent on cerebral organoids derived from human induced pluripotent stem cells. We also provide tested protocols to evaluate neurogenesis in cerebral organoids with ethynyl deoxyuridine labeling and neuronal activity with live calcium imaging and microelectrode arrays. Together, these protocols should facilitate the implementation of cerebral organoid technologies in laboratories wishing to evaluate the effects of specific compounds or conditions on the development and function of human neurons with only basic cell culture equipment. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of human cerebral organoids from pluripotent stem cells Support Protocol 1: Human pluripotent stem cell culture Basic Protocol 2: Evaluation of neurogenesis in cerebral organoids with ethynyl deoxyuridine labeling Basic Protocol 3: Calcium imaging in cerebral organoids Basic Protocol 4: Electrophysiological evaluation of cerebral organoids with microelectrode arrays Support Protocol 2: Immunostaining of cerebral organoids.
Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas , Organoides/metabolismo , Desoxiuridina/metabolismoRESUMEN
Activity-induced neurogenesis has been extensively studied in rodents but the lack of ante mortem accessibility to human brain at the cellular and molecular levels limits studies of the process in humans. Using cerebral spheroids derived from human induced pluripotent stem cells (iPSCs), we investigated the effects of 4-aminopyridine (4AP) on neuronal activity and associated neurogenesis. Our studies demonstrate that 4AP increases neuronal activity in 3-month-old cerebral spheroids while increasing numbers of new neurons and decreasing the population of new glial cells. We also observed a significant decrease in the expression of miR-135a, which has previously been shown to be decreased in exercise-induced neurogenesis. Predicted targets of miR-135a include key participants in the SMAD2/3 and BDNF pathways. Together, our results suggest that iPSC-derived cerebral spheroids are an attractive model to study several aspects of activity-induced neurogenesis.
Asunto(s)
Células Madre Pluripotentes Inducidas , MicroARNs , Células-Madre Neurales , 4-Aminopiridina/metabolismo , 4-Aminopiridina/farmacología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/genéticaRESUMEN
Although circular RNAs (circRNAs) are enriched in the brain, their relevance for brain function and psychiatric disorders is poorly understood. Here, we show that circHomer1 is inversely associated with relative HOMER1B mRNA isoform levels in both the orbitofrontal cortex (OFC) and stem-cell-derived neuronal cultures of subjects with psychiatric disorders. We further demonstrate that in vivo circHomer1 knockdown (KD) within the OFC can inhibit the synaptic expression of Homer1b mRNA. Furthermore, we show that circHomer1 directly binds to Homer1b mRNA and that Homer1b-specific KD increases synaptic circHomer1 levels and improves OFC-mediated behavioral flexibility. Importantly, double circHomer1 and Homer1b in vivo co-KD results in a complete rescue in circHomer1-associated alterations in both chance reversal learning and synaptic gene expression. Lastly, we uncover an RNA-binding protein that can directly bind to circHomer1 and promote its biogenesis. Taken together, our data provide mechanistic insights into the importance of circRNAs in brain function and disease.
Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas de Andamiaje Homer/metabolismo , Corteza Prefrontal/metabolismo , ARN Circular/metabolismo , Aprendizaje Inverso/fisiología , Animales , Trastorno Bipolar/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
OBJECTIVES: Regulation of gene expression is important for the development and function of the nervous system. However, the transcriptional programs altered in psychiatric diseases are not completely characterized. Human gene association studies and analysis of mutant mice suggest that the transcription factor specificity protein 4 (SP4) may be implicated in the pathophysiology of psychiatric diseases. We hypothesized that SP4 levels may be altered in the brain of bipolar disorder (BD) subjects and regulated by neuronal activity and drug treatment. METHODS: We analyzed messenger RNA (mRNA) and protein levels of SP4 and SP1 in the postmortem prefrontal cortex and cerebellum of BD subjects (n = 10) and controls (n = 10). We also examined regulation of SP4 mRNA and protein levels by neuronal activity and lithium in rat cerebellar granule neurons. RESULTS: We report a reduction of SP4 and SP1 proteins, but not mRNA levels, in the cerebellum of BD subjects. SP4 protein and mRNA levels were also reduced in the prefrontal cortex. Moreover, we found in rat cerebellar granule neurons that under non-depolarizing conditions SP4, but not SP1, was polyubiquitinated and degraded by the proteasome while lithium stabilized SP4 protein. CONCLUSIONS: Our study provides the first evidence of altered SP4 protein in the cerebellum and prefrontal cortex in BD subjects supporting a possible role of transcription factor SP4 in the pathogenesis of the disease. In addition, our finding that SP4 stability is regulated by depolarization and lithium provides a pathway through which neuronal activity and lithium could control gene expression suggesting that normalization of SP4 levels could contribute to treatment of affective disorders.
Asunto(s)
Antimaníacos/farmacología , Trastorno Bipolar/patología , Cerebelo/metabolismo , Regulación de la Expresión Génica/fisiología , Cloruro de Litio/farmacología , Neuronas/efectos de los fármacos , Factor de Transcripción Sp4/metabolismo , Adulto , Anciano , Animales , Animales Recién Nacidos , Bloqueadores de los Canales de Calcio/farmacología , Células Cultivadas , Cerebelo/citología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nimodipina/farmacología , Cambios Post Mortem , Cloruro de Potasio/farmacología , Corteza Prefrontal/metabolismo , ARN Mensajero/metabolismo , Ratas , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp4/genética , Estadísticas no ParamétricasRESUMEN
Estrogens rapidly facilitate learning and memory, including social recognition - the ability of an animal to recognize another. In ovariectomized female mice, systemic or dorsal hippocampal administration of 17ß-estradiol (E2) facilitates short-term social recognition memory within 40 min. Within the same timeframe, E2 increases dendritic spine density in CA1 dorsal hippocampal neurons of behavioural task-naïve mice and in hippocampal sections. Mechanisms underlying these effects remain unclear. Estrogens rapidly modulate actin cytoskeletal dynamics through actin polymerization and the translation of key synaptic proteins. We first determined doses of actin polymerization inhibitor latrunculin A (LAT) and protein synthesis inhibitor anisomycin (ANI) that would block short-term social recognition memory when infused into the dorsal hippocampus of ovariectomized female mice 15 min prior to testing. The highest doses that did not block social recognition prevented the facilitating effects of E2, whereas DNA transcription inhibitor, actinomycin D, could not block social recognition. As task performance may interfere with E2-facilitated increases in dendritic spine density, dendritic spine density and length were examined in task-performing and task-naïve mice. E2 increased dendritic spine density 15 but not 40 min following treatment, regardless of whether the animal had performed the social recognition task. This effect was blocked by LAT, but not ANI. Thus, both actin polymerization and protein synthesis are necessary for E2 to rapidly facilitate social recognition, whereas actin polymerization, but not protein synthesis, is required for the rapid increase in dendritic spine density brought on by E2.
Asunto(s)
Actinas , Espinas Dendríticas , Estradiol , Memoria a Corto Plazo , Polimerizacion , Actinas/metabolismo , Animales , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Estradiol/farmacología , Estrógenos/metabolismo , Femenino , Hipocampo/metabolismo , Memoria a Corto Plazo/efectos de los fármacos , Ratones , Ovariectomía , Conducta SocialRESUMEN
Gliomas are characterized by diffuse infiltration of tumor cells into surrounding brain tissue, and this highly invasive nature contributes to disease recurrence and poor patient outcomes. The molecular mechanisms underlying glioma cell invasion remain incompletely understood, limiting development of new targeted therapies. Here, we have identified phosphotyrosine adaptor protein ShcD as upregulated in malignant glioma and shown that it associates with receptor tyrosine kinase Tie2 to facilitate invasion. In human glioma cells, we find that expression of ShcD and Tie2 increases invasion, and this significant synergistic effect is disrupted with a ShcD mutant that cannot bind Tie2 or hyperphosphorylate the receptor. Expression of ShcD and/or Tie2 further increases invadopodia formation and matrix degradation in U87 glioma cells. In a coculture model, we show that U87-derived tumor spheroids expressing both ShcD and Tie2 display enhanced infiltration into cerebral organoids. Mechanistically, we identify changes in focal adhesion kinase phosphorylation in the presence of ShcD and/or Tie2 in U87 cells upon Tie2 activation. Finally, we identify a strong correlation between transcript levels of ShcD and Tie2 signaling components as well as N-cadherin in advanced gliomas and those with classical or mesenchymal subtypes, and we show that elevated expression of ShcD correlates with a significant reduction in patient survival in higher grade gliomas with mesenchymal signature. Altogether, our data highlight a novel Tie2-ShcD signaling axis in glioma cell invasion, which may be of clinical significance. IMPLICATIONS: ShcD cooperates with Tie2 to promote glioma cell invasion and its elevated expression correlates with poor patient outcome in advanced gliomas.
Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Receptor TIE-2/metabolismo , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Secuencia de Aminoácidos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioma/genética , Glioma/patología , Células HEK293 , Humanos , Invasividad Neoplásica , TransfecciónRESUMEN
The effective treatment of bipolar disorder (BD) represents a significant unmet medical need. Although lithium remains a mainstay of treatment for BD, limited knowledge regarding how it modulates affective behavior has proven an obstacle to discovering more effective mood stabilizers with fewer adverse side effects. One potential mechanism of action of lithium is through inhibition of the serine/threonine protein kinase GSK3ß, however, relevant substrates whose change in phosphorylation may mediate downstream changes in neuroplasticity remain poorly understood. Here, we used human induced pluripotent stem cell (hiPSC)-derived neuronal cells and stable isotope labeling by amino acids in cell culture (SILAC) along with quantitative mass spectrometry to identify global changes in the phosphoproteome upon inhibition of GSK3α/ß with the highly selective, ATP-competitive inhibitor CHIR-99021. Comparison of phosphorylation changes to those induced by therapeutically relevant doses of lithium treatment led to the identification of collapsin response mediator protein 2 (CRMP2) as being highly sensitive to both treatments as well as an extended panel of structurally distinct GSK3α/ß inhibitors. On this basis, a high-content image-based assay in hiPSC-derived neurons was developed to screen diverse compounds, including FDA-approved drugs, for their ability to mimic lithium's suppression of CRMP2 phosphorylation without directly inhibiting GSK3ß kinase activity. Systemic administration of a subset of these CRMP2-phosphorylation suppressors were found to mimic lithium's attenuation of amphetamine-induced hyperlocomotion in mice. Taken together, these studies not only provide insights into the neural substrates regulated by lithium, but also provide novel human neuronal assays for supporting the development of mechanism-based therapeutics for BD and related neuropsychiatric disorders.
Asunto(s)
Trastorno Bipolar , Células Madre Pluripotentes Inducidas , Anfetamina/farmacología , Animales , Trastorno Bipolar/tratamiento farmacológico , Humanos , Litio/farmacología , Compuestos de Litio/farmacología , Ratones , FosforilaciónRESUMEN
Through epigenetic and other regulatory functions, the histone deacetylase (HDAC) family of enzymes has emerged as a promising therapeutic target for central nervous system and other disorders. Here we report on the synthesis and functional characterization of new HDAC inhibitors based structurally on tianeptine, a drug used primarily to treat major depressive disorder (MDD) that has a poorly understood mechanism of action. Since the chemical structure of tianeptine resembles certain HDAC inhibitors, we profiled the in vitro HDAC inhibitory activity of tianeptine and demonstrated its ability to inhibit the lysine deacetylase activity of a subset of class I HDACs. Consistent with a model of active site Zn2+ chelation by the carboxylic acid present in tianeptine, newly synthesized analogues containing either a hydroxamic acid or ortho-aminoanilide exhibited increased potency and selectivity among the HDAC family. This in vitro potency translated to improved efficacy in a panel of high-content imaging assays designed to assess HDAC target engagement and functional effects on critical pathways involved in neuroplasticity in both primary mouse neurons and, for the first time, human neurons differentiated from pluripotent stem cells. Most notably, tianeptinaline, a class I HDAC-selective analogue of tianeptine, but not tianeptine itself, increased histone acetylation, and enhanced CREB-mediated transcription and the expression of Arc (activity-regulated cytoskeleton-associated protein). Systemic in vivo administration of tianeptinaline to mice confirmed its brain penetration and was found to enhance contextual fear conditioning, a behavioral test of hippocampal-dependent memory. Tianeptinaline and its derivatives provide new pharmacological tools to dissect chromatin-mediated neuroplasticity underlying memory and other epigenetically related processes implicated in health and disease.
Asunto(s)
Condicionamiento Psicológico/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Memoria/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas del Citoesqueleto/efectos de los fármacos , Proteínas del Citoesqueleto/genética , Epigénesis Genética , Miedo , Histona Desacetilasas , Humanos , Ratones , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/metabolismo , Células Madre Pluripotentes/citología , Tiazepinas/farmacología , Transcripción Genética/efectos de los fármacosRESUMEN
The AKT family of serine-threonine kinases functions downstream of phosphatidylinositol 3-kinase (PI3K) to transmit signals by direct phosphorylation of a number of targets, including the mammalian target of rapamycin (mTOR), glycogen synthase kinase 3ß (GSK3ß), and ß-catenin. AKT binds to phosphatidylinositol (3,4,5)-triphosphate (PIP3) generated by PI3K activation, which results in its membrane localization and subsequent activation through phosphorylation by phosphoinositide-dependent protein kinase 1 (PDK1). Together, the PI3K-AKT signaling pathway plays pivotal roles in many cellular systems, including in the central nervous system where it governs both neurodevelopment and neuroplasticity. Recently, lysine residues (Lys14 and Lys20) on AKT, located within its pleckstrin homology (PH) domain that binds to membrane-bound PIP3, have been found to be acetylated under certain cellular contexts in various cancer cell lines. These acetylation modifications are removed by the enzymatic action of the class III lysine deacetylases, SIRT1 and SIRT2, of the sirtuin family. The extent to which reversible acetylation regulates AKT function in other cell types remains poorly understood. We report here that AKT kinase activity is modulated by a class IIb lysine deacetylase, histone deacetylase 6 (HDAC6), in human neural progenitor cells (NPCs). We find that HDAC6 and AKT physically interact with each other in the neuronal cells, and in the presence of selective HDAC6 inhibition, AKT is acetylated at Lys163 and Lys377 located in the kinase domain, two novel sites distinct from the acetylation sites in the PH-domain modulated by the sirtuins. Measurement of the functional effect of HDAC6 inhibition on AKT revealed decreased binding to PIP3, a correlated decrease in AKT kinase activity, decreased phosphorylation of Ser552 on ß-catenin, and modulation of neuronal differentiation trajectories. Taken together, our studies implicate the deacetylase activity of HDAC6 as a novel regulator of AKT signaling and point to novel mechanisms for regulating AKT activity with small-molecule inhibitors of HDAC6 currently under clinical development.
Asunto(s)
Histona Desacetilasa 6/química , Histona Desacetilasa 6/metabolismo , Lisina/metabolismo , Células-Madre Neurales/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Acetilación , Animales , Diferenciación Celular , Activación Enzimática , Humanos , Lisina/química , Ratones , Estructura Molecular , Células-Madre Neurales/citología , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismoRESUMEN
The role of Arc in synaptic plasticity and memory consolidation has been investigated for many years with recent evidence that defects in the expression or activity of this immediate-early gene may also contribute to the pathophysiology of brain disorders including schizophrenia and fragile X syndrome. These results bring forward the concept that reversing Arc abnormalities could provide an avenue to improve cognitive or neurological impairments in different disease contexts, but how to achieve this therapeutic objective has remained elusive. Here, we present results from a chemogenomic screen that probed a mechanistically diverse library of small molecules for modulators of BDNF-induced Arc expression in primary cortical neurons. This effort identified compounds with a range of influences on Arc, including promoting its acetylation-a previously uncharacterized post-translational modification of this protein. Together, our data provide insights into the control of Arc that could be targeted to harness neuroplasticity for clinical applications.