Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Metab ; 81: 101895, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340808

RESUMEN

Peptide YY (PYY3-36) is a post-prandially released gut hormone with potent appetite-reducing activity, the mechanism of action of which is not fully understood. Unravelling how this system physiologically regulates food intake may help unlock its therapeutic potential, whilst minimising unwanted effects. Here we demonstrate that germline and post-natal targeted knockdown of the PYY3-36 preferring receptor (neuropeptide Y (NPY) Y2 receptor (Y2R)) in the afferent vagus nerve is required for the appetite inhibitory effects of physiologically-released PYY3-36, but not peripherally administered pharmacological doses. Post-natal knockdown of the Y2R results in a transient body weight phenotype that is not evident in the germline model. Loss of vagal Y2R signalling also results in altered meal patterning associated with accelerated gastric emptying. These results are important for the design of PYY-based anti-obesity agents.


Asunto(s)
Hormonas Gastrointestinales , Péptido YY , Péptido YY/fisiología , Apetito/fisiología , Nervio Vago , Ingestión de Alimentos
2.
JCI Insight ; 5(8)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32229720

RESUMEN

Glucokinase (GK) is highly expressed in the hypothalamic paraventricular nucleus (PVN); however, its role is currently unknown. We found that GK in the PVN acts as part of a glucose-sensing mechanism within the PVN that regulates glucose homeostasis by controlling glucagon-like peptide 1 (GLP-1) release. GLP-1 is released from enteroendocrine L cells in response to oral glucose. Here we identify a brain mechanism critical to the release of GLP-1 in response to oral glucose. We show that increasing expression of GK or injection of glucose into the PVN increases GLP-1 release in response to oral glucose. On the contrary, decreasing expression of GK or injection of nonmetabolizable glucose into the PVN prevents GLP-1 release. Our results demonstrate that gluco-sensitive GK neurons in the PVN are critical to the response to oral glucose and subsequent release of GLP-1.


Asunto(s)
Péptido 1 Similar al Glucagón/genética , Glucosa/farmacología , Núcleo Hipotalámico Paraventricular/metabolismo , Animales , Glucoquinasa/metabolismo , Masculino , Ratas , Ratas Endogámicas WF
3.
Elife ; 82019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31241463

RESUMEN

Studies suggest that placental nutrient supply adapts according to fetal demands. However, signaling events underlying placental adaptations remain unknown. Here we demonstrate that phosphoinositide 3-kinase p110α in the fetus and the trophoblast interplay to regulate placental nutrient supply and fetal growth. Complete loss of fetal p110α caused embryonic death, whilst heterozygous loss resulted in fetal growth restriction and impaired placental formation and nutrient transport. Loss of trophoblast p110α resulted in viable fetuses, abnormal placental development and a failure of the placenta to transport sufficient nutrients to match fetal demands for growth. Using RNA-seq we identified genes downstream of p110α in the trophoblast that are important in adapting placental phenotype. Using CRISPR/Cas9 we showed loss of p110α differentially affects gene expression in trophoblast and embryonic stem cells. Our findings reveal important, but distinct roles for p110α in the different compartments of the conceptus, which control fetal resource acquisition and growth.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Células Madre Embrionarias/enzimología , Metabolismo Energético , Desarrollo Fetal , Placentación , Trofoblastos/enzimología , Animales , Femenino , Feto , Ratones , Embarazo , Transducción de Señal
4.
J Clin Invest ; 128(3): 960-969, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29376887

RESUMEN

Profound hyperphagia is a major disabling feature of Prader-Willi syndrome (PWS). Characterization of the mechanisms that underlie PWS-associated hyperphagia has been slowed by the paucity of animal models with increased food intake or obesity. Mice with a microdeletion encompassing the Snord116 cluster of noncoding RNAs encoded within the Prader-Willi minimal deletion critical region have previously been reported to show growth retardation and hyperphagia. Here, consistent with previous reports, we observed growth retardation in Snord116+/-P mice with a congenital paternal Snord116 deletion. However, these mice neither displayed increased food intake nor had reduced hypothalamic expression of the proprotein convertase 1 gene PCSK1 or its upstream regulator NHLH2, which have recently been suggested to be key mediators of PWS pathogenesis. Specifically, we disrupted Snord116 expression in the mediobasal hypothalamus in Snord116fl mice via bilateral stereotaxic injections of a Cre-expressing adeno-associated virus (AAV). While the Cre-injected mice had no change in measured energy expenditure, they became hyperphagic between 9 and 10 weeks after injection, with a subset of animals developing marked obesity. In conclusion, we show that selective disruption of Snord116 expression in the mediobasal hypothalamus models the hyperphagia of PWS.


Asunto(s)
Hiperfagia/metabolismo , Hipotálamo/metabolismo , Síndrome de Prader-Willi/genética , ARN Nucleolar Pequeño/genética , Animales , Composición Corporal , Dependovirus , Modelos Animales de Enfermedad , Eliminación de Gen , Genotipo , Hiperfagia/genética , Masculino , Ratones , Ratones Transgénicos , Obesidad/metabolismo , Síndrome de Prader-Willi/metabolismo
5.
Elife ; 62017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28829741

RESUMEN

Neurons lose intrinsic axon regenerative ability with maturation, but the mechanism remains unclear. Using an in-vitro laser axotomy model, we show a progressive decline in the ability of cut CNS axons to form a new growth cone and then elongate. Failure of regeneration was associated with increased retraction after axotomy. Transportation into axons becomes selective with maturation; we hypothesized that selective exclusion of molecules needed for growth may contribute to regeneration decline. With neuronal maturity rab11 vesicles (which carry many molecules involved in axon growth) became selectively targeted to the somatodendritic compartment and excluded from axons by predominant retrograde transport However, on overexpression rab11 was mistrafficked into proximal axons, and these axons showed less retraction and enhanced regeneration after axotomy. These results suggest that the decline of intrinsic axon regenerative ability is associated with selective exclusion of key molecules, and that manipulation of transport can enhance regeneration.


Asunto(s)
Axones/fisiología , Regeneración , Proteínas de Unión al GTP rab/metabolismo , Animales , Transporte Biológico , Diferenciación Celular , Vesículas Citoplasmáticas/metabolismo , Ratas Sprague-Dawley
6.
BMC Res Notes ; 5: 27, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22244497

RESUMEN

BACKGROUND: With the maturation of next-generation DNA sequencing (NGS) technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU), extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC) clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence. FINDINGS: Using the NVIDIA Compute Unified Device Architecture (CUDA) software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput. CONCLUSIONS: BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology.BarraCUDA is currently available from http://seqbarracuda.sf.net.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA