Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 161(3): 647-660, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25910212

RESUMEN

How disease-associated mutations impair protein activities in the context of biological networks remains mostly undetermined. Although a few renowned alleles are well characterized, functional information is missing for over 100,000 disease-associated variants. Here we functionally profile several thousand missense mutations across a spectrum of Mendelian disorders using various interaction assays. The majority of disease-associated alleles exhibit wild-type chaperone binding profiles, suggesting they preserve protein folding or stability. While common variants from healthy individuals rarely affect interactions, two-thirds of disease-associated alleles perturb protein-protein interactions, with half corresponding to "edgetic" alleles affecting only a subset of interactions while leaving most other interactions unperturbed. With transcription factors, many alleles that leave protein-protein interactions intact affect DNA binding. Different mutations in the same gene leading to different interaction profiles often result in distinct disease phenotypes. Thus disease-associated alleles that perturb distinct protein activities rather than grossly affecting folding and stability are relatively widespread.


Asunto(s)
Enfermedad/genética , Mutación Missense , Mapas de Interacción de Proteínas , Proteínas/genética , Proteínas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Sistemas de Lectura Abierta , Pliegue de Proteína , Estabilidad Proteica
2.
Proteomics ; 12(10): 1519-26, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22610515

RESUMEN

Membrane-bound proteins are one of the most important protein types in the cell, and are involved in many major cell processes and signaling pathways. Most proteins, including those at membranes, must interact with other proteins to form complexes, which are essential for their function(s). In this review, we describe some of the major non-mass spectrometry-based methods and technologies used for the investigation of intracellular membrane protein complexes including Tango, fluorescence/bioluminescence resonance energy transfer (F/BRET), luminescence-based mammalian interactome mapping (LUMIER), protein-fragment complementation assay (PCA), and membrane yeast two-hybrid assay (MYTH). We highlight the advantages and drawbacks of these methods, describe recent studies utilizing these methods, and discuss some of the major findings in the study of membrane protein-based cell pathways.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , Animales , Humanos , Proteínas de la Membrana/análisis , Ratones , Unión Proteica , Transducción de Señal , Técnicas del Sistema de Dos Híbridos
3.
Nature ; 440(7084): 637-43, 2006 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-16554755

RESUMEN

Identification of protein-protein interactions often provides insight into protein function, and many cellular processes are performed by stable protein complexes. We used tandem affinity purification to process 4,562 different tagged proteins of the yeast Saccharomyces cerevisiae. Each preparation was analysed by both matrix-assisted laser desorption/ionization-time of flight mass spectrometry and liquid chromatography tandem mass spectrometry to increase coverage and accuracy. Machine learning was used to integrate the mass spectrometry scores and assign probabilities to the protein-protein interactions. Among 4,087 different proteins identified with high confidence by mass spectrometry from 2,357 successful purifications, our core data set (median precision of 0.69) comprises 7,123 protein-protein interactions involving 2,708 proteins. A Markov clustering algorithm organized these interactions into 547 protein complexes averaging 4.9 subunits per complex, about half of them absent from the MIPS database, as well as 429 additional interactions between pairs of complexes. The data (all of which are available online) will help future studies on individual proteins as well as functional genomics and systems biology.


Asunto(s)
Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Evolución Biológica , Secuencia Conservada , Espectrometría de Masas , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Proteoma/química , Proteómica , Proteínas de Saccharomyces cerevisiae/química
4.
PLoS One ; 8(9): e75372, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24069405

RESUMEN

The yeast HECT-family E3 ubiquitin ligase Rsp5 has been implicated in diverse cell functions. Previously, we and others [1], [2] reported the physical and functional interaction of Rsp5 with the deubiquitinating enzyme Ubp2, and the ubiquitin associated (UBA) domain-containing cofactor Rup1. To investigate the mechanism and significance of the Rsp5-Rup1-Ubp2 complex, we examined Rsp5 ubiquitination status in the presence or absence of these cofactors. We found that, similar to its mammalian homologues, Rsp5 is auto-ubiquitinated in vivo. Association with a substrate or Rup1 increased Rsp5 self-ubiquitination, whereas Ubp2 efficiently deubiquitinates Rsp5 in vivo and in vitro. The data reported here imply an auto-modulatory mechanism of Rsp5 regulation common to other E3 ligases.


Asunto(s)
Endopeptidasas/metabolismo , Proteínas Fúngicas/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Catálisis , Complejos de Clasificación Endosomal Requeridos para el Transporte , Unión Proteica , Especificidad por Sustrato , Ubiquitinación
5.
PLoS One ; 4(1): e4259, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19165343

RESUMEN

Protein ubiquitination is essential for many events linked to intracellular protein trafficking. We sought to elucidate the possible involvement of the S. cerevisiae deubiquitinating enzyme Ubp2 in transporter and receptor trafficking after we (this study) and others established that affinity purified Ubp2 interacts stably with the E3 ubiquitin ligase Rsp5 and the (ubiquitin associated) UBA domain containing protein Rup1. UBP2 interacts genetically with RSP5, while Rup1 facilitates the tethering of Ubp2 to Rsp5 via a PPPSY motif. Using the uracil permease Fur4 as a model reporter system, we establish a role for Ubp2 in membrane protein turnover. Similar to hypomorphic rsp5 alleles, cells deleted for UBP2 exhibited a temporal stabilization of Fur4 at the plasma membrane, indicative of perturbed protein trafficking. This defect was ubiquitin dependent, as a Fur4 N-terminal ubiquitin fusion construct bypassed the block and restored sorting in the mutant. Moreover, the defect was absent in conditions where recycling was absent, implicating Ubp2 in sorting at the multivesicular body. Taken together, our data suggest a previously overlooked role for Ubp2 as a positive regulator of Rsp5-mediated membrane protein trafficking subsequent to endocytosis.


Asunto(s)
Endopeptidasas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Alelos , Catálisis , Membrana Celular/metabolismo , Endocitosis , Complejos de Clasificación Endosomal Requeridos para el Transporte , Fluorouracilo/farmacología , Factor de Apareamiento , Modelos Genéticos , Proteínas de Transporte de Nucleótidos/metabolismo , Péptidos/metabolismo , Unión Proteica , Transporte de Proteínas/genética , Saccharomyces cerevisiae , Ubiquitina-Proteína Ligasas/metabolismo
6.
Mol Cell ; 16(6): 1027-34, 2004 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-15610744

RESUMEN

Affinity purification of the yeast 19S proteasome revealed the presence of Sem1 as a subunit. Its human homolog, DSS1, was found likewise to copurify with the human 19S proteasome. DSS1 is known to associate with the tumor suppressor protein BRCA2 involved in repair of DNA double-strand breaks (DSBs). We demonstrate that Sem1 is required for efficient repair of an HO-generated yeast DSB using both homologous recombination (HR) and nonhomologous end joining (NHEJ) pathways. Deletion of SEM1 or genes encoding other nonessential 19S or 20S proteasome subunits also results in synthetic growth defects and hypersensitivity to genotoxins when combined with mutations in well-established DNA DSB repair genes. Chromatin immunoprecipitation showed that Sem1 is recruited along with the 19S and 20S proteasomes to a DSB in vivo, and this recruitment is dependent on components of both the HR and NHEJ repair pathways, suggesting a direct role of the proteasome in DSB repair.


Asunto(s)
Reparación del ADN/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Daño del ADN/fisiología , Endopeptidasas/metabolismo , Exorribonucleasas , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA