RESUMEN
Spinocerebellar ataxias (SCAs) are heterogeneous autosomal dominant progressive ataxic disorders. SCA25 has been linked to PNPT1 pathogenic variants. Although pediatric onset is not unusual, to date only one patient with onset in the first years of life has been reported. This study presents an additional case, wherein symptoms emerged during the toddler phase, accompanied by the identification of a novel PNPT1 variant. The child was seen at 3 years because of frequent falls. Neurological examination revealed cerebellar signs and psychomotor delay. Brain MRI showed cerebellar atrophy (CA), cerebellar cortex, and dentate nuclei hyperintensities. Metabolic and genetic testing was inconclusive. At follow-up (age 6), the child had clinically and radiologically worsened; electroneurography (ENG) revealed axonal sensory neuropathy. Screening of genes associated with ataxias and mitochondrial disease identified a novel, heterozygous variant in PNPT1, which was probably pathogenic. This variant was also detected in the proband's mother and maternal grandmother, both asymptomatic, which aligns with the previously documented incomplete penetrance of heterozygous PNPT1 variants. Our study confirms that SCA25 can have onset in early childhood and characterizes natural history in pediatric cases: progressive cerebellar ataxia with sensory neuropathy, which manifests during the course of the disease. We report for the first time cerebellar gray matter hyperintensities, suggesting that SCA25 should be included in the differential diagnosis of cerebellar ataxias associated with such brain imaging features. In summary, SCA25 should be considered in the diagnostic workup of early onset pediatric progressive ataxias. Additionally, we confirm an incomplete penetrance and highly variable expressivity of PNPT1-associated SCA25.
Asunto(s)
Ataxia Cerebelosa , Ataxias Espinocerebelosas , Degeneraciones Espinocerebelosas , Niño , Preescolar , Humanos , Ataxia , Ataxia Cerebelosa/genética , Exorribonucleasas , Proteínas Mitocondriales , Ataxias Espinocerebelosas/diagnóstico , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Degeneraciones Espinocerebelosas/genéticaRESUMEN
PURPOSE: Biallelic variants in TARS2, encoding the mitochondrial threonyl-tRNA-synthetase, have been reported in a small group of individuals displaying a neurodevelopmental phenotype but with limited neuroradiological data and insufficient evidence for causality of the variants. METHODS: Exome or genome sequencing was carried out in 15 families. Clinical and neuroradiological evaluation was performed for all affected individuals, including review of 10 previously reported individuals. The pathogenicity of TARS2 variants was evaluated using in vitro assays and a zebrafish model. RESULTS: We report 18 new individuals harboring biallelic TARS2 variants. Phenotypically, these individuals show developmental delay/intellectual disability, regression, cerebellar and cerebral atrophy, basal ganglia signal alterations, hypotonia, cerebellar signs, and increased blood lactate. In vitro studies showed that variants within the TARS2301-381 region had decreased binding to Rag GTPases, likely impairing mTORC1 activity. The zebrafish model recapitulated key features of the human phenotype and unraveled dysregulation of downstream targets of mTORC1 signaling. Functional testing of the variants confirmed the pathogenicity in a zebrafish model. CONCLUSION: We define the clinico-radiological spectrum of TARS2-related mitochondrial disease, unveil the likely involvement of the mTORC1 signaling pathway as a distinct molecular mechanism, and establish a TARS2 zebrafish model as an important tool to study variant pathogenicity.
Asunto(s)
ARN de Transferencia , Pez Cebra , Animales , Humanos , Mutación , Pez Cebra/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Ligasas , FenotipoRESUMEN
AFG3-like matrix AAA peptidase subunit 2 gene (AFG3L2, OMIM * 604,581) biallelic mutations lead to autosomal recessive spastic ataxia-5 SPAX5, OMIM # 614,487), a rare hereditary form of ataxia. The clinical spectrum includes early-onset cerebellar ataxia, spasticity, and progressive myoclonic epilepsy (PME). In Italy, the epidemiology of the disease is probably underestimated. The advent of next generation sequencing (NGS) technologies has speeded up the diagnosis of hereditary diseases and increased the percentage of diagnosis of rare disorders, such as the rare hereditary ataxia groups. Here, we describe two patients from two different villages in the province of Ferrara, who manifested a different clinical ataxia-plus history, although carrying the same biallelic mutation in AFG3L2 (p.Met625Ile) identified through NGS analysis.
Asunto(s)
Ataxia Cerebelosa , Degeneraciones Espinocerebelosas , Humanos , ATPasas Asociadas con Actividades Celulares Diversas/genética , Degeneraciones Espinocerebelosas/genética , Ataxia Cerebelosa/genética , Mutación/genética , Italia , Proteasas ATP-Dependientes/genéticaRESUMEN
BACKGROUND AND PURPOSE: Mitochondrial diseases (MDs) are heterogeneous disorders caused by mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) associated with specific syndromes. However, especially in childhood, patients often display heterogeneity. Several reports on the biochemical and molecular profiles in children have been published, but studies tend not to differentiate between mtDNA- and nDNA-associated diseases, and focus is often on a specific phenotype. Thus, large cohort studies specifically focusing on mtDNA defects in the pediatric population are lacking. METHODS: We reviewed the clinical, metabolic, biochemical, and neuroimaging data of 150 patients with MDs due to mtDNA alterations collected at our neurological institute over the past 20 years. RESULTS: mtDNA impairment is less frequent than nDNA impairment in pediatric MDs. Ocular involvement is extremely frequent in our cohort, as is classical Leber hereditary optic neuropathy, especially with onset before 12 years of age. Extraneurological manifestations and isolated myopathy appear to be rare, unlike adult phenotypes. Deep gray matter involvement, early disease onset, and specific phenotypes, such as Pearson syndrome and Leigh syndrome, represent unfavorable prognostic factors. Phenotypes related to single large scale mtDNA deletions appear to be very frequent in the pediatric population. Furthermore, we report for the first time an mtDNA pathogenic variant associated with cavitating leukodystrophy. CONCLUSIONS: We report on a large cohort of pediatric patients with mtDNA defects, adding new data on the phenotypical characterization of mtDNA defects and suggestions for diagnostic workup and therapeutic approach.
Asunto(s)
Enfermedad de Leigh , Enfermedades Mitocondriales , Enfermedades Musculares , Niño , Humanos , ADN Mitocondrial/genética , Estudios de Cohortes , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/complicaciones , Enfermedad de Leigh/genética , Enfermedades Musculares/complicaciones , MutaciónRESUMEN
Mitochondrial leukodystrophies constitute a group of different conditions presenting with a wide range of clinical presentation but with some shared neuroradiological features. Genetic defects in NUBPL have been recognized as cause of a pediatric onset mitochondrial leukodystrophy characterized by onset at the end of the first year of life with motor delay or regression and cerebellar signs, followed by progressive spasticity. Early magnetic resonance imagings (MRIs) show white matter abnormalities with predominant involvement of frontoparietal regions and corpus callosum. A striking cerebellar involvement is usually observed. Later MRIs show spontaneous improvement of white matter abnormalities but worsening of the cerebellar involvement evolving to global atrophy and progressive involvement of brainstem. After the 7 cases initially described, 11 more subjects were reported. Some of them were similar to patients from the original series while few others broadened the phenotypic spectrum. We performed a literature review and report on a new patient who further expand the spectrum of NUBPL-related leukodystrophy. With our study we confirm that the association of cerebral white matter and cerebellar cortex abnormalities is a feature commonly observed in early stages of the disease but beside the original and so far prevalent presentation, there are also uncommon phenotypes: clinical onset can be earlier and more severe than previously thought and signs of extraneurological involvement can be observed. Brain white matter can be diffusely abnormal without anteroposterior gradient, can progressively worsen, and cystic degeneration can be present. Thalami can be involved. Basal ganglia can also become involved during disease evolution.
Asunto(s)
Leucodistrofia de Células Globoides , Sustancia Blanca , Humanos , Imagen por Resonancia Magnética , Tronco Encefálico/patología , Leucodistrofia de Células Globoides/diagnóstico , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Cuerpo Calloso/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Proteínas Mitocondriales/genéticaRESUMEN
Leber's hereditary optic neuropathy (LHON) is a disease that affects the optical nerve, causing visual loss. The diagnosis of LHON is mostly defined by the identification of three pathogenic variants in the mitochondrial DNA. Idebenone is widely used to treat LHON patients, but only some of them are responders to treatment. In our study, we assessed the maximal respiration rate (MRR) and other respiratory parameters in eight fibroblast lines from subjects carrying LHON pathogenic variants. We measured also the effects of idebenone treatment on cell growth and mtDNA amounts. Results showed that LHON fibroblasts had significantly reduced respiratory parameters in untreated conditions, but no significant gain in MRR after idebenone supplementation. No major toxicity toward mitochondrial function and no relevant compensatory effect in terms of mtDNA quantity were found for the treatment at the tested conditions. Our findings confirmed that fibroblasts from subjects harboring LHON pathogenic variants displayed impaired respiration, regardless of the disease penetrance and severity. Testing responsiveness to idebenone treatment in cultured cells did not fully recapitulate in vivo data. The in-depth evaluation of cellular respiration in fibroblasts is a good approach to evaluating novel mtDNA variants associated with LHON but needs further evaluation as a potential biomarker for disease prognosis and treatment responsiveness.
Asunto(s)
Atrofia Óptica Hereditaria de Leber , Humanos , Atrofia Óptica Hereditaria de Leber/tratamiento farmacológico , Atrofia Óptica Hereditaria de Leber/genética , ADN Mitocondrial/genética , Mitocondrias/genética , FibroblastosRESUMEN
Kearns-Sayre syndrome (KSS) is a rare mitochondrial disease associated to a widespread cerebral leukodystrophy. MRI shows a typical centripetal pattern where U-fibers are mainly affected with a relative spare of periventricular white matter. Recently, different patterns of spinal cord involvement have been described in KSS. Here we report 4 new cases with typical cerebral leukodystrophy associated with spinal cord lesions. A pattern characterized by abnormal signal intensity in the H gray matter and posterior columns was found in 2 patients, while the remaining 2 presented a peculiar involvement of the spinal trigeminal nuclei at the junction of low medulla and cervical cord. MRI spinal cord involvement in KSS is probably an underestimated finding and should be evaluated in the diagnostic work up of these patients.
Asunto(s)
Síndrome de Kearns-Sayre , Enfermedades Mitocondriales , Sustancia Blanca , Humanos , Síndrome de Kearns-Sayre/complicaciones , Síndrome de Kearns-Sayre/diagnóstico , Síndrome de Kearns-Sayre/patología , Imagen por Resonancia Magnética , Mitocondrias/patología , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/diagnóstico por imagen , Sustancia Blanca/patologíaRESUMEN
Isolated biochemical deficiency of mitochondrial complex I is the most frequent signature among mitochondrial diseases and is associated with a wide variety of clinical symptoms. Leigh syndrome represents the most frequent neuroradiological finding in patients with complex I defect and more than 80 monogenic causes have been involved in the disease. In this report, we describe seven patients from four unrelated families harboring novel NDUFA12 variants, with six of them presenting with Leigh syndrome. Molecular genetic characterization was performed using next-generation sequencing combined with the Sanger method. Biochemical and protein studies were achieved by enzymatic activities, blue native gel electrophoresis, and western blot analysis. All patients displayed novel homozygous mutations in the NDUFA12 gene, leading to the virtual absence of the corresponding protein. Surprisingly, despite the fact that in none of the analyzed patients, NDUFA12 protein was detected, they present a different onset and clinical course of the disease. Our report expands the array of genetic alterations in NDUFA12 and underlines phenotype variability associated with NDUFA12 defect.
Asunto(s)
Enfermedad de Leigh/genética , Enfermedades Mitocondriales/genética , NADPH Deshidrogenasa/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Consanguinidad , Complejo I de Transporte de Electrón/genética , Familia , Femenino , Predisposición Genética a la Enfermedad , Humanos , Italia , Enfermedad de Leigh/complicaciones , Enfermedad de Leigh/patología , Masculino , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/patología , Fenotipo , Polimorfismo de Nucleótido SimpleRESUMEN
OBJECTIVE: Dominant optic atrophy (DOA) is the most common inherited optic neuropathy, with a prevalence of 1:12,000 to 1:25,000. OPA1 mutations are found in 70% of DOA patients, with a significant number remaining undiagnosed. METHODS: We screened 286 index cases presenting optic atrophy, negative for OPA1 mutations, by targeted next generation sequencing or whole exome sequencing. Pathogenicity and molecular mechanisms of the identified variants were studied in yeast and patient-derived fibroblasts. RESULTS: Twelve cases (4%) were found to carry novel variants in AFG3L2, a gene that has been associated with autosomal dominant spinocerebellar ataxia 28 (SCA28). Half of cases were familial with a dominant inheritance, whereas the others were sporadic, including de novo mutations. Biallelic mutations were found in 3 probands with severe syndromic optic neuropathy, acting as recessive or phenotype-modifier variants. All the DOA-associated AFG3L2 mutations were clustered in the ATPase domain, whereas SCA28-associated mutations mostly affect the proteolytic domain. The pathogenic role of DOA-associated AFG3L2 mutations was confirmed in yeast, unraveling a mechanism distinct from that of SCA28-associated AFG3L2 mutations. Patients' fibroblasts showed abnormal OPA1 processing, with accumulation of the fission-inducing short forms leading to mitochondrial network fragmentation, not observed in SCA28 patients' cells. INTERPRETATION: This study demonstrates that mutations in AFG3L2 are a relevant cause of optic neuropathy, broadening the spectrum of clinical manifestations and genetic mechanisms associated with AFG3L2 mutations, and underscores the pivotal role of OPA1 and its processing in the pathogenesis of DOA. ANN NEUROL 2020 ANN NEUROL 2020;88:18-32.
Asunto(s)
Proteasas ATP-Dependientes/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , GTP Fosfohidrolasas/genética , Atrofia Óptica/genética , Enfermedades del Nervio Óptico/genética , Adolescente , Adulto , Anciano , Niño , Femenino , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación , Linaje , Secuenciación del Exoma , Adulto JovenRESUMEN
Biallelic mutations in the C1QBP gene have been associated with mitochondrial cardiomyopathy and combined respiratory-chain deficiencies, with variable onset (including intrauterine or neonatal forms), phenotypes, and severity. We studied two unrelated adult patients from consanguineous families, presenting with progressive external ophthalmoplegia (PEO), mitochondrial myopathy, and without any heart involvement. Muscle biopsies from both patients showed typical mitochondrial alterations and the presence of multiple mitochondrial DNA deletions, whereas biochemical defects of the respiratory chain were present only in one subject. Using next-generation sequencing approaches, we identified homozygous mutations in C1QBP. Immunoblot analyses in patients' muscle samples revealed a strong reduction in the amount of the C1QBP protein and varied impairment of respiratory chain complexes, correlating with disease severity. Despite the original study indicated C1QBP mutations as causative for mitochondrial cardiomyopathy, our data indicate that mutations in C1QBP have to be considered in subjects with PEO phenotype or primary mitochondrial myopathy and without cardiomyopathy.
Asunto(s)
Proteínas Portadoras , Miopatías Mitocondriales , Proteínas Mitocondriales , Oftalmoplejía Externa Progresiva Crónica , Oftalmoplejía , Proteínas Portadoras/genética , ADN Mitocondrial/genética , Homocigoto , Humanos , Miopatías Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Oftalmoplejía/genética , Oftalmoplejía Externa Progresiva Crónica/genética , Oftalmoplejía Externa Progresiva Crónica/patologíaRESUMEN
Mitochondrial diseases are a plethora of inherited neuromuscular disorders sharing defects in mitochondrial respiration, but largely different from one another for genetic basis and pathogenic mechanism. Whole exome sequencing was performed in a familiar trio (trio-WES) with a child affected by severe epileptic encephalopathy associated with respiratory complex I deficiency and mitochondrial DNA depletion in skeletal muscle. By trio-WES we identified biallelic mutations in SLC25A10, a nuclear gene encoding a member of the mitochondrial carrier family. Genetic and functional analyses conducted on patient fibroblasts showed that SLC25A10 mutations are associated with reduction in RNA quantity and aberrant RNA splicing, and to absence of SLC25A10 protein and its transporting function. The yeast SLC25A10 ortholog knockout strain showed defects in mitochondrial respiration and mitochondrial DNA content, similarly to what observed in the patient skeletal muscle, and growth susceptibility to oxidative stress. Albeit patient fibroblasts were depleted in the main antioxidant molecules NADPH and glutathione, transport assays demonstrated that SLC25A10 is unable to transport glutathione. Here, we report the first recessive mutations of SLC25A10 associated to an inherited severe mitochondrial neurodegenerative disorder. We propose that SLC25A10 loss-of-function causes pathological disarrangements in respiratory-demanding conditions and oxidative stress vulnerability.
Asunto(s)
Encefalopatías/genética , Encefalopatías/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Mutación/genética , Antioxidantes/metabolismo , Niño , ADN Mitocondrial/genética , Heterocigoto , Humanos , Masculino , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Estrés Oxidativo/genética , Linaje , Empalme del ARN/genéticaRESUMEN
Mutations in either the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA metabolism, including ELAC2. The ELAC2 gene codes for the mitochondrial RNase Z, responsible for endonucleolytic cleavage of the 3' ends of mitochondrial pre-tRNAs. Here, we report the identification of 16 novel ELAC2 variants in individuals presenting with mitochondrial respiratory chain deficiency, hypertrophic cardiomyopathy (HCM), and lactic acidosis. We provide evidence for the pathogenicity of the novel missense variants by studying the RNase Z activity in an in vitro system. We also modeled the residues affected by a missense mutation in solved RNase Z structures, providing insight into enzyme structure and function. Finally, we show that primary fibroblasts from the affected individuals have elevated levels of unprocessed mitochondrial RNA precursors. Our study thus broadly confirms the correlation of ELAC2 variants with severe infantile-onset forms of HCM and mitochondrial respiratory chain dysfunction. One rare missense variant associated with the occurrence of prostate cancer (p.Arg781His) impairs the mitochondrial RNase Z activity of ELAC2, suggesting a functional link between tumorigenesis and mitochondrial RNA metabolism.
Asunto(s)
Cardiomiopatía Hipertrófica/genética , Genes Mitocondriales , Predisposición Genética a la Enfermedad , Mutación , Proteínas de Neoplasias/genética , Procesamiento Postranscripcional del ARN , ARN de Transferencia/genética , Alelos , Sustitución de Aminoácidos , Biomarcadores , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/terapia , Estudios de Cohortes , Activación Enzimática , Femenino , Expresión Génica , Estudios de Asociación Genética , Genotipo , Humanos , Lactante , Cinética , Masculino , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Fenotipo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , Especificidad por SustratoRESUMEN
OBJECTIVES: To determine the prevalence of epilepsy in children with early-onset mitochondrial diseases (MDs) and to evaluate the epileptic phenotypes and associated features. MATERIALS AND METHODS: Children affected by MD with onset during the first year of life were enrolled. Patients were classified according to their mitochondrial phenotype, and all findings in patients with epilepsy versus patients without were compared. The epileptic features were analyzed. RESULTS: The series includes 129 patients (70 females) with median age at disease onset of 3 months. The median time of follow-up was 5 years. Non-syndromic mitochondrial encephalopathy and pyruvate dehydrogenase complex deficiency were the main mitochondrial diseases associated with epilepsy (P < 0.05). Seizures occurred in 48%, and the presence of epilepsy was significantly associated with earlier age at disease onset, presence of perinatal manifestations, and early detection of developmental delay and regression (P < 0.001). Epileptic encephalopathy (EE) with spasms and EE with prominent focal seizures were the most detected epileptic syndromes (37% and 27.4%). Several seizure types were recorded in 53.2%, with the unusual association of generalized and focal epileptic pattern. Disabling epilepsy was detected in 63% and was associated with early seizure onset, presence of several seizure types, epileptic syndrome featuring EE, and the recurrence of episodes of status epilepticus and epilepsia partialis continua (P < 0.05). CONCLUSIONS: Epilepsy in children with early-onset MD may be a presenting or a prominent symptom in a multisystemic clinical presentation. Epilepsy-related factors could determine a worst seizure outcome, leading to a more severe burned of the disease.
Asunto(s)
Epilepsia/epidemiología , Enfermedades Mitocondriales/epidemiología , Adolescente , Niño , Preescolar , Epilepsia/etiología , Epilepsia/patología , Femenino , Humanos , Lactante , Masculino , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/patología , FenotipoRESUMEN
Chronic progressive external ophthalmoplegia (CPEO) is common in mitochondrial disorders and is frequently associated with multiple mtDNA deletions. The onset is typically in adulthood, and affected subjects can also present with general muscle weakness. The underlying genetic defects comprise autosomal-dominant or recessive mutations in several nuclear genes, most of which play a role in mtDNA replication. Next-generation sequencing led to the identification of compound-heterozygous RNASEH1 mutations in two singleton subjects and a homozygous mutation in four siblings. RNASEH1, encoding ribonuclease H1 (RNase H1), is an endonuclease that is present in both the nucleus and mitochondria and digests the RNA component of RNA-DNA hybrids. Unlike mitochondria, the nucleus harbors a second ribonuclease (RNase H2). All affected individuals first presented with CPEO and exercise intolerance in their twenties, and these were followed by muscle weakness, dysphagia, and spino-cerebellar signs with impaired gait coordination, dysmetria, and dysarthria. Ragged-red and cytochrome c oxidase (COX)-negative fibers, together with impaired activity of various mitochondrial respiratory chain complexes, were observed in muscle biopsies of affected subjects. Western blot analysis showed the virtual absence of RNase H1 in total lysate from mutant fibroblasts. By an in vitro assay, we demonstrated that altered RNase H1 has a reduced capability to remove the RNA from RNA-DNA hybrids, confirming their pathogenic role. Given that an increasing amount of evidence indicates the presence of RNA primers during mtDNA replication, this result might also explain the accumulation of mtDNA deletions and underscores the importance of RNase H1 for mtDNA maintenance.
Asunto(s)
Replicación del ADN/genética , ADN Mitocondrial/fisiología , Encefalomiopatías Mitocondriales/genética , Oftalmoplejía Externa Progresiva Crónica/genética , ARN/metabolismo , Ribonucleasa H/genética , Adulto , Secuencia de Aminoácidos , Secuencia de Bases , Southern Blotting , Western Blotting , ADN Mitocondrial/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Encefalomiopatías Mitocondriales/patología , Datos de Secuencia Molecular , Mutación/genética , Oftalmoplejía Externa Progresiva Crónica/patología , LinajeRESUMEN
Biallelic mutations in NDUFAF6 have been identified as responsible for cases of autosomal recessive Leigh syndrome associated with mitochondrial complex I deficiency. Here we report two siblings and two unrelated subjects with Leigh syndrome, in which we found the same compound heterozygous missense (c.532G>C:p.A178P) and deep intronic (c.420+784C>T) variants in NDUFAF6. We demonstrated that the identified intronic variant creates an alternative splice site, leading to the production of an aberrant transcript. A detailed analysis of whole-exome sequencing data together with the functional validation based on mRNA analysis may reveal pathogenic variants even in non-exonic regions.
Asunto(s)
Secuenciación del Exoma , Heterocigoto , Intrones , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/genética , Mutación Missense , ARN Mensajero/genética , Alelos , Niño , Preescolar , Femenino , Fibroblastos/metabolismo , Expresión Génica , Haplotipos , Humanos , Lactante , Linfocitos/metabolismo , Imagen por Resonancia Magnética/métodos , Masculino , Proteínas Mitocondriales , Linaje , FenotipoRESUMEN
A homoallelic missense founder mutation of the iron-sulfur cluster assembly 2 (ISCA2) gene has been recently reported in six cases affected by an autosomal recessive infantile neurodegenerative mitochondrial disorder. We documented a case of a 2-month-old girl presenting with severe hypotonia and nystagmus, who rapidly deteriorated and died at the age of three months. Increased cerebral spinal fluid level of lactate, documented also at the brain spectroscopy, involvement of the cortex, restricted diffusion of white and gray matter abnormalities, sparing of the corpus callosum and extensive involvement of the spinal cord were observed. Her clinical presenting features and course as well as some neuroradiological findings mimicked those of early-onset leukoencephalopathy with brainstem and spinal cord involvement and high brain lactate (LBSL). The analysis of the mitochondrial respiratory chain function showed a reduced activity of complexes II and IV. The girl harboured two heterozygous mutations in the ISCA2 gene. A comprehensive review of the literature and a comparison with the cases of early onset LBSL enabled us to highlight significant differences in the clinical, biochemical and neuroradiological phenotype between the two conditions, which also emerged from the comparison with the other 6 reported cases of ISCA2 gene mutation previously reported. In summary, this represents the second report ever published associating ISCA2 gene mutation with a mitochondrial leukoencephalopathy, with a different genetic mechanism to the previous cases. Molecular analysis of ISCA2 should be included in the genetic panel for the diagnosis of early onset mitochondrial leukoencephalopathies.
Asunto(s)
Encéfalo/metabolismo , Proteínas Hierro-Azufre/genética , Ácido Láctico/metabolismo , Leucoencefalopatías/genética , Médula Espinal/metabolismo , Femenino , Humanos , Lactante , Leucoencefalopatías/diagnóstico , Mitocondrias/metabolismo , MutaciónRESUMEN
Next Generation Sequencing (NGS) technologies are revolutionizing the diagnostic screening for rare disease entities, including primary mitochondrial disorders, particularly those caused by nuclear gene defects. NGS approaches are able to identify the causative gene defects in small families and even single individuals, unsuitable for investigation by traditional linkage analysis. These technologies are contributing to fill the gap between mitochondrial disease cases defined on the basis of clinical, neuroimaging and biochemical readouts, which still outnumber by approximately 50% the cases for which a molecular-genetic diagnosis is attained. We have been using a combined, two-step strategy, based on targeted genes panel as a first NGS screening, followed by whole exome sequencing (WES) in still unsolved cases, to analyze a large cohort of subjects, that failed to show mutations in mtDNA and in ad hoc sets of specific nuclear genes, sequenced by the Sanger's method. Not only this approach has allowed us to reach molecular diagnosis in a significant fraction (20%) of these difficult cases, but it has also revealed unexpected and conceptually new findings. These include the possibility of marked variable penetrance of recessive mutations, the identification of large-scale DNA rearrangements, which explain spuriously heterozygous cases, and the association of mutations in known genes with unusual, previously unreported clinical phenotypes. Importantly, WES on selected cases has unraveled the presence of pathogenic mutations in genes encoding non-mitochondrial proteins (e.g. the transcription factor E4F1), an observation that further expands the intricate genetics of mitochondrial disease and suggests a new area of investigation in mitochondrial medicine. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Asunto(s)
ADN Mitocondrial/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Mutación , Proteínas Represoras/genética , Adolescente , Secuencia de Aminoácidos , Niño , Preescolar , Estudios de Cohortes , ADN Mitocondrial/metabolismo , Transporte de Electrón , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Exoma , Femenino , Expresión Génica , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Lactante , Masculino , Mitocondrias/patología , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Datos de Secuencia Molecular , Proteínas Represoras/metabolismo , Alineación de Secuencia , Ubiquitina-Proteína Ligasas , Adulto JovenRESUMEN
Cytochrome c oxidase (COX) deficiency is a frequent biochemical abnormality in mitochondrial disorders, but a large fraction of cases remains genetically undetermined. Whole-exome sequencing led to the identification of APOPT1 mutations in two Italian sisters and in a third Turkish individual presenting severe COX deficiency. All three subjects presented a distinctive brain MRI pattern characterized by cavitating leukodystrophy, predominantly in the posterior region of the cerebral hemispheres. We then found APOPT1 mutations in three additional unrelated children, selected on the basis of these particular MRI features. All identified mutations predicted the synthesis of severely damaged protein variants. The clinical features of the six subjects varied widely from acute neurometabolic decompensation in late infancy to subtle neurological signs, which appeared in adolescence; all presented a chronic, long-surviving clinical course. We showed that APOPT1 is targeted to and localized within mitochondria by an N-terminal mitochondrial targeting sequence that is eventually cleaved off from the mature protein. We then showed that APOPT1 is virtually absent in fibroblasts cultured in standard conditions, but its levels increase by inhibiting the proteasome or after oxidative challenge. Mutant fibroblasts showed reduced amount of COX holocomplex and higher levels of reactive oxygen species, which both shifted toward control values by expressing a recombinant, wild-type APOPT1 cDNA. The shRNA-mediated knockdown of APOPT1 in myoblasts and fibroblasts caused dramatic decrease in cell viability. APOPT1 mutations are responsible for infantile or childhood-onset mitochondrial disease, hallmarked by the combination of profound COX deficiency with a distinctive neuroimaging presentation.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Complejo IV de Transporte de Electrones/metabolismo , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Proteínas Mitocondriales/genética , Mutación/genética , Adolescente , Adulto , Células Cultivadas , Niño , Preescolar , Deficiencia de Citocromo-c Oxidasa , Complejo IV de Transporte de Electrones/genética , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Lactante , Leucoencefalopatías/enzimología , Imagen por Resonancia Magnética , Masculino , Mitocondrias/metabolismo , Mioblastos/metabolismo , Mioblastos/patologíaRESUMEN
Respiratory chain deficiencies exhibit a wide variety of clinical phenotypes resulting from defective mitochondrial energy production through oxidative phosphorylation. These defects can be caused by either mutations in the mtDNA or mutations in nuclear genes coding for mitochondrial proteins. The underlying pathomechanisms can affect numerous pathways involved in mitochondrial physiology. By whole-exome and candidate gene sequencing, we identified 11 individuals from 9 families carrying compound heterozygous or homozygous mutations in GTPBP3, encoding the mitochondrial GTP-binding protein 3. Affected individuals from eight out of nine families presented with combined respiratory chain complex deficiencies in skeletal muscle. Mutations in GTPBP3 are associated with a severe mitochondrial translation defect, consistent with the predicted function of the protein in catalyzing the formation of 5-taurinomethyluridine (τm(5)U) in the anticodon wobble position of five mitochondrial tRNAs. All case subjects presented with lactic acidosis and nine developed hypertrophic cardiomyopathy. In contrast to individuals with mutations in MTO1, the protein product of which is predicted to participate in the generation of the same modification, most individuals with GTPBP3 mutations developed neurological symptoms and MRI involvement of thalamus, putamen, and brainstem resembling Leigh syndrome. Our study of a mitochondrial translation disorder points toward the importance of posttranscriptional modification of mitochondrial tRNAs for proper mitochondrial function.