RESUMEN
A mucosal route of vaccination could prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication at the site of infection and limit transmission. We compared protection against heterologous XBB.1.16 challenge in nonhuman primates (NHPs) ~5 months following intramuscular boosting with bivalent mRNA encoding WA1 and BA.5 spike proteins or mucosal boosting with a WA1-BA.5 bivalent chimpanzee adenoviral-vectored vaccine delivered by intranasal or aerosol device. NHPs boosted by either mucosal route had minimal virus replication in the nose and lungs, respectively. By contrast, protection by intramuscular mRNA was limited to the lower airways. The mucosally delivered vaccine elicited durable airway IgG and IgA responses and, unlike the intramuscular mRNA vaccine, induced spike-specific B cells in the lungs. IgG, IgA and T cell responses correlated with protection in the lungs, whereas mucosal IgA alone correlated with upper airway protection. This study highlights differential mucosal and serum correlates of protection and how mucosal vaccines can durably prevent infection against SARS-CoV-2.
Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , Inmunoglobulina A , SARS-CoV-2 , Animales , Inmunoglobulina A/inmunología , SARS-CoV-2/inmunología , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Macaca mulatta , Adenoviridae/inmunología , Adenoviridae/genética , Inmunidad Mucosa , Vacunas contra el Adenovirus/inmunología , Vacunas contra el Adenovirus/administración & dosificación , Femenino , Pulmón/virología , Pulmón/inmunología , Linfocitos B/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Administración Intranasal , Vacunación/métodos , HumanosRESUMEN
B.1.351 is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant most resistant to antibody neutralization. We demonstrate how the dose and number of immunizations influence protection. Nonhuman primates received two doses of 30 or 100 µg of Moderna's mRNA-1273 vaccine, a single immunization of 30 µg, or no vaccine. Two doses of 100 µg of mRNA-1273 induced 50% inhibitory reciprocal serum dilution neutralizing antibody titers against live SARS-CoV-2 p.Asp614Gly and B.1.351 of 3,300 and 240, respectively. Higher neutralizing responses against B.1.617.2 were also observed after two doses compared to a single dose. After challenge with B.1.351, there was ~4- to 5-log10 reduction of viral subgenomic RNA and low to undetectable replication in bronchoalveolar lavages in the two-dose vaccine groups, with a 1-log10 reduction in nasal swabs in the 100-µg group. These data establish that a two-dose regimen of mRNA-1273 will be critical for providing upper and lower airway protection against major variants of concern.
Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Primates/inmunología , SARS-CoV-2/inmunología , Vacuna nCoV-2019 mRNA-1273 , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/virología , Línea Celular , Chlorocebus aethiops , Femenino , Humanos , Macaca mulatta , Masculino , Mesocricetus , Primates/virología , ARN Viral/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación/métodos , Células Vero , Carga Viral/métodosRESUMEN
Neisseria gonorrhoeae (the gonococcus, Gc) causes the sexually transmitted infection gonorrhea. Gc is a prominent threat to human health by causing severe lifelong sequelae, including infertility and chronic pelvic pain, which is amplified by the emergence of "superbug" strains resistant to all current antibiotics. Gc is highly adapted to colonize human mucosal surfaces, where it survives despite initiating a robust inflammatory response and influx of polymorphonuclear leukocytes (PMNs, neutrophils) that typically clear bacteria. Here, dual-species RNA-sequencing was used to define Gc and PMN transcriptional profiles alone and after infection. Core host and bacterial responses were assessed for two strains of Gc and three human donors' PMNs. Comparative analysis of Gc transcripts revealed overlap between Gc responses to PMNs, iron, and hydrogen peroxide; 98 transcripts were differentially expressed across both Gc strains in response to PMN co-culture, including iron-responsive and oxidative stress response genes. We experimentally determined that the iron-dependent TbpB is suppressed by PMN co-culture, and iron-limited Gc have a survival advantage when cultured with PMNs. Analysis of PMN transcripts modulated by Gc infection revealed differential expression of genes driving cell adhesion, migration, inflammatory responses, and inflammation resolution pathways. Production of pro-inflammatory cytokines, including IL1B and IL8, the adhesion factor ICAM1, and prostaglandin PGE2 were induced in PMNs in response to Gc. Together, this study represents a comprehensive and experimentally validated dual-species transcriptomic analysis of two isolates of Gc and primary human PMNs that gives insight into how this bacterium survives innate immune onslaught to cause disease.
Asunto(s)
Gonorrea , Neisseria gonorrhoeae , Neutrófilos , Transcriptoma , Humanos , Neisseria gonorrhoeae/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Gonorrea/inmunología , Gonorrea/microbiologíaRESUMEN
The bacterial pathogen Neisseria gonorrhoeae is an urgent global health problem due to increasing numbers of infections, coupled with rampant antibiotic resistance. Vaccines against gonorrhea are being prioritized to combat drug-resistant N. gonorrhoeae. Meningococcal serogroup B vaccines such as four-component meningococcal B vaccine (4CMenB) are predicted by epidemiology studies to cross-protect individuals from natural infection with N. gonorrhoeae and elicit antibodies that cross-react with N. gonorrhoeae. Evaluation of vaccine candidates for gonorrhea requires a suite of assays for predicting efficacy in vitro and in animal models of infection, including the role of antibodies elicited by immunization. Here, we present the development and optimization of assays to evaluate antibody functionality after immunization of mice: antibody binding to intact N. gonorrhoeae, serum bactericidal activity, and opsonophagocytic killing activity using primary human neutrophils [polymorphonuclear leukocytes (PMNs)]. These assays were developed with purified antibodies against N. gonorrhoeae and used to evaluate serum from mice that were vaccinated with 4CMenB or given alum as a negative control. Results from these assays will help prioritize gonorrhea vaccine candidates for advanced preclinical to early clinical studies and will contribute to identifying correlates and mechanisms of immune protection against N. gonorrhoeae.
Asunto(s)
Gonorrea , Infecciones Meningocócicas , Vacunas Meningococicas , Neisseria meningitidis Serogrupo B , Neisseria meningitidis , Humanos , Ratones , Animales , Neisseria gonorrhoeae , Gonorrea/microbiología , Infecciones Meningocócicas/microbiología , Vacunas Bacterianas , Anticuerpos , Vacunas Combinadas , Anticuerpos Antibacterianos , Antígenos BacterianosRESUMEN
BACKGROUND: Vaccines to prevent coronavirus disease 2019 (Covid-19) are urgently needed. The effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines on viral replication in both upper and lower airways is important to evaluate in nonhuman primates. METHODS: Nonhuman primates received 10 or 100 µg of mRNA-1273, a vaccine encoding the prefusion-stabilized spike protein of SARS-CoV-2, or no vaccine. Antibody and T-cell responses were assessed before upper- and lower-airway challenge with SARS-CoV-2. Active viral replication and viral genomes in bronchoalveolar-lavage (BAL) fluid and nasal swab specimens were assessed by polymerase chain reaction, and histopathological analysis and viral quantification were performed on lung-tissue specimens. RESULTS: The mRNA-1273 vaccine candidate induced antibody levels exceeding those in human convalescent-phase serum, with live-virus reciprocal 50% inhibitory dilution (ID50) geometric mean titers of 501 in the 10-µg dose group and 3481 in the 100-µg dose group. Vaccination induced type 1 helper T-cell (Th1)-biased CD4 T-cell responses and low or undetectable Th2 or CD8 T-cell responses. Viral replication was not detectable in BAL fluid by day 2 after challenge in seven of eight animals in both vaccinated groups. No viral replication was detectable in the nose of any of the eight animals in the 100-µg dose group by day 2 after challenge, and limited inflammation or detectable viral genome or antigen was noted in lungs of animals in either vaccine group. CONCLUSIONS: Vaccination of nonhuman primates with mRNA-1273 induced robust SARS-CoV-2 neutralizing activity, rapid protection in the upper and lower airways, and no pathologic changes in the lung. (Funded by the National Institutes of Health and others.).
Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/inmunología , Neumonía Viral/prevención & control , Vacunas Virales/inmunología , Vacuna nCoV-2019 mRNA-1273 , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Betacoronavirus/fisiología , Antígenos CD4 , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/terapia , Modelos Animales de Enfermedad , Relación Dosis-Respuesta Inmunológica , Inmunización Pasiva , Pulmón/patología , Pulmón/virología , Macaca mulatta , Neumonía Viral/patología , Neumonía Viral/terapia , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Linfocitos T/inmunología , Carga Viral , Vacunas Virales/administración & dosificación , Replicación Viral , Sueroterapia para COVID-19RESUMEN
Motile bacteria are proficient at finding optimal environments for colonization. Often, they use chemotaxis to sense nutrient availability and dangerous concentrations of toxic chemicals. For many bacteria, the repertoire of chemoreceptors is large, suggesting they possess a broad palate with respect to sensing. However, knowledge of the molecules detected by chemotaxis signal transduction systems is limited. Some bacteria, like Vibrio parahaemolyticus, are social and swarm in groups on surfaces. This marine bacterium and human pathogen secretes the S signal autoinducer, which cues degradation of intracellular c-di-GMP leading to transcription of the swarming program. Here, we report that the S signal also directs motility at a behavioral level by serving as a chemoattractant. The data demonstrate that V. parahaemolyticus senses the S signal using SscL and SscS, homologous methyl-accepting chemotaxis proteins. SscL is required by planktonic bacteria for S signal chemotaxis. SscS plays a role during swarming, and mutants lacking this chemoreceptor swarm faster and produce colonies with more deeply branched swarming fronts than the wild type or the sscL mutant. Other Vibrio species can swim toward the S signal, suggesting a recruitment role for this cell-cell communication molecule in the context of polymicrobial marine communities.
Asunto(s)
Comunicación Celular/fisiología , Vibrio parahaemolyticus/metabolismo , Vibrio parahaemolyticus/fisiología , Proteínas Bacterianas/metabolismo , Movimiento Celular , Células Quimiorreceptoras/metabolismo , Quimiotaxis/fisiología , Proteínas de la Membrana/metabolismo , Transducción de Señal , Vibrio parahaemolyticus/genéticaRESUMEN
The bacterial pathogen Neisseria gonorrhoeae is an urgent global health problem due to increasing numbers of infections, coupled with rampant antibiotic resistance. Vaccines against gonorrhea are being prioritized to combat drug-resistant N. gonorrhoeae. Meningococcal serogroup B vaccines such as 4CMenB are predicted by epidemiology studies to cross-protect individuals from natural infection with N. gonorrhoeae and elicit antibodies that cross-react with N. gonorrhoeae. Evaluation of vaccine candidates for gonorrhea requires a suite of assays for predicting efficacy in vitro and in animal models of infection, including the role of antibodies elicited by immunization. Here we present assays to evaluate antibody functionality after immunization: antibody binding to intact N. gonorrhoeae, serum bactericidal activity, and opsonophagocytic killing activity using primary human neutrophils (polymorphonuclear leukocytes). These assays were developed with purified antibodies against N. gonorrhoeae and used to evaluate serum from mice that were vaccinated with 4CMenB or given alum as a negative control. Results from these assays will help prioritize gonorrhea vaccine candidates for advanced preclinical to early clinical study and will contribute to identifying correlates and mechanisms of immune protection against N. gonorrhoeae .
RESUMEN
SARS-CoV-2 continues to pose a global threat, and current vaccines, while effective against severe illness, fall short in preventing transmission. To address this challenge, there's a need for vaccines that induce mucosal immunity and can rapidly control the virus. In this study, we demonstrate that a single immunization with a novel gorilla adenovirus-based vaccine (GRAd) carrying the pre-fusion stabilized Spike protein (S-2P) in non-human primates provided protective immunity for over one year against the BA.5 variant of SARS-CoV-2. A prime-boost regimen using GRAd followed by adjuvanted S-2P (GRAd+S-2P) accelerated viral clearance in both the lower and upper airways. GRAd delivered via aerosol (GRAd(AE)+S-2P) modestly improved protection compared to its matched intramuscular regimen, but showed dramatically superior boosting by mRNA and, importantly, total virus clearance in the upper airway by day 4 post infection. GrAd vaccination regimens elicited robust and durable systemic and mucosal antibody responses to multiple SARS-CoV-2 variants, but only GRAd(AE)+S-2P generated long-lasting T cell responses in the lung. This research underscores the flexibility of the GRAd vaccine platform to provide durable immunity against SARS-CoV-2 in both the lower and upper airways.
RESUMEN
Waning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.1.16 virus challenge 5 months following IM or mucosal boosting in non-human primates (NHP) that had previously received a two-dose mRNA-1273 primary vaccine regimen. The mucosal boost was composed of a bivalent chimpanzee adenoviral-vectored vaccine encoding for both SARS-CoV-2 WA1 and BA.5 spike proteins (ChAd-SARS-CoV-2-S) and delivered either by an intranasal mist or an inhaled aerosol. An additional group of animals was boosted by the IM route with bivalent WA1/BA.5 spike-matched mRNA (mRNA-1273.222) as a benchmark control. NHP were challenged in the upper and lower airways 18 weeks after boosting with XBB.1.16, a heterologous Omicron lineage strain. Cohorts boosted with ChAd-SARS-CoV-2-S by an aerosolized or intranasal route had low to undetectable virus replication as assessed by levels of subgenomic SARS-CoV-2 RNA in the lungs and nose, respectively. In contrast, animals that received the mRNA-1273.222 boost by the IM route showed minimal protection against virus replication in the upper airway but substantial reduction of virus RNA levels in the lower airway. Immune analysis showed that the mucosal vaccines elicited more durable antibody and T cell responses than the IM vaccine. Protection elicited by the aerosolized vaccine was associated with mucosal IgG and IgA responses, whereas protection elicited by intranasal delivery was mediated primarily by mucosal IgA. Thus, durable immunity and effective protection against a highly transmissible heterologous variant in both the upper and lower airways can be achieved by mucosal delivery of a virus-vectored vaccine. Our study provides a template for the development of mucosal vaccines that limit infection and transmission against respiratory pathogens.
RESUMEN
BACKGROUND: Vaccine efficacy against the B.1.351 variant following mRNA-1273 vaccination in humans has not been determined. Nonhuman primates (NHP) are a useful model for demonstrating whether mRNA-1273 mediates protection against B.1.351. METHODS: Nonhuman primates received 30 or 100 µg of mRNA-1273 as a prime-boost vaccine at 0 and 4 weeks, a single immunization of 30 µg at week 0, or no vaccine. Antibody and T cell responses were assessed in blood, bronchioalveolar lavages (BAL), and nasal washes. Viral replication in BAL and nasal swabs were determined by qRT-PCR for sgRNA, and histopathology and viral antigen quantification were performed on lung tissue post-challenge. RESULTS: Eight weeks post-boost, 100 µg x2 of mRNA-1273 induced reciprocal ID 50 neutralizing geometric mean titers against live SARS-CoV-2 D614G and B.1.351 of 3300 and 240, respectively, and 430 and 84 for the 30 µg x2 group. There were no detectable neutralizing antibodies against B.1351 after the single immunization of 30 µg. On day 2 following B.1.351 challenge, sgRNA in BAL was undetectable in 6 of 8 NHP that received 100 µg x2 of mRNA-1273, and there was a â¼2-log reduction in sgRNA in NHP that received two doses of 30 µg compared to controls. In nasal swabs, there was a 1-log 10 reduction observed in the 100 µg x2 group. There was limited inflammation or viral antigen in lungs of vaccinated NHP post-challenge. CONCLUSIONS: Immunization with two doses of mRNA-1273 achieves effective immunity that rapidly controls lower and upper airway viral replication against the B.1.351 variant in NHP.
RESUMEN
Immune correlates of protection can be used as surrogate endpoints for vaccine efficacy. The nonhuman primate (NHP) model of SARS-CoV-2 infection replicates key features of human infection and may be used to define immune correlates of protection following vaccination. Here, NHP received either no vaccine or doses ranging from 0.3 - 100 µg of mRNA-1273, a mRNA vaccine encoding the prefusion-stabilized SARS-CoV-2 spike (S-2P) protein encapsulated in a lipid nanoparticle. mRNA-1273 vaccination elicited robust circulating and mucosal antibody responses in a dose-dependent manner. Viral replication was significantly reduced in bronchoalveolar lavages and nasal swabs following SARS-CoV-2 challenge in vaccinated animals and was most strongly correlated with levels of anti-S antibody binding and neutralizing activity. Consistent with antibodies being a correlate of protection, passive transfer of vaccine-induced IgG to naïve hamsters was sufficient to mediate protection. Taken together, these data show that mRNA-1273 vaccine-induced humoral immune responses are a mechanistic correlate of protection against SARS-CoV-2 infection in NHP. ONE-SENTENCE SUMMARY: mRNA-1273 vaccine-induced antibody responses are a mechanistic correlate of protection against SARS-CoV-2 infection in NHP.
RESUMEN
Adjuvanted soluble protein vaccines have been used extensively in humans for protection against various viral infections based on their robust induction of antibody responses. Here, soluble prefusion-stabilized spike protein trimers (preS dTM) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were formulated with the adjuvant AS03 and administered twice to nonhuman primates (NHPs). Binding and functional neutralization assays and systems serology revealed that the vaccinated NHP developed AS03-dependent multifunctional humoral responses that targeted distinct domains of the spike protein and bound to a variety of Fc receptors mediating immune cell effector functions in vitro. The neutralizing 50% inhibitory concentration titers for pseudovirus and live SARS-CoV-2 were higher than titers for a panel of human convalescent serum samples. NHPs were challenged intranasally and intratracheally with a high dose (3 × 106 plaque forming units) of SARS-CoV-2 (USA-WA1/2020 isolate). Two days after challenge, vaccinated NHPs showed rapid control of viral replication in both the upper and lower airways. Vaccinated NHPs also had increased spike protein-specific immunoglobulin G (IgG) antibody responses in the lung as early as 2 days after challenge. Moreover, passive transfer of vaccine-induced IgG to hamsters mediated protection from subsequent SARS-CoV-2 challenge. These data show that antibodies induced by the AS03-adjuvanted preS dTM vaccine were sufficient to mediate protection against SARS-CoV-2 in NHPs and that rapid anamnestic antibody responses in the lung may be a key mechanism for protection.
Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/terapia , Cricetinae , Inmunización Pasiva , Pulmón , Primates , SARS-CoV-2 , Vacunación , Sueroterapia para COVID-19RESUMEN
Immune correlates of protection can be used as surrogate endpoints for vaccine efficacy. Here, nonhuman primates (NHPs) received either no vaccine or doses ranging from 0.3 to 100 µg of the mRNA-1273 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. mRNA-1273 vaccination elicited circulating and mucosal antibody responses in a dose-dependent manner. Viral replication was significantly reduced in bronchoalveolar lavages and nasal swabs after SARS-CoV-2 challenge in vaccinated animals and most strongly correlated with levels of antiS antibody and neutralizing activity. Lower antibody levels were needed for reduction of viral replication in the lower airway than in the upper airway. Passive transfer of mRNA-1273induced immunoglobulin G to naïve hamsters was sufficient to mediate protection. Thus, mRNA-1273 vaccineinduced humoral immune responses are a mechanistic correlate of protection against SARS-CoV-2 in NHPs.
Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunogenicidad Vacunal , SARS-CoV-2/inmunología , Vacuna nCoV-2019 mRNA-1273 , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Afinidad de Anticuerpos , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/virología , Linfocitos T CD4-Positivos/inmunología , COVID-19/inmunología , COVID-19/virología , Femenino , Esquemas de Inmunización , Inmunización Pasiva , Inmunización Secundaria , Inmunoglobulina G/inmunología , Memoria Inmunológica , Pulmón/inmunología , Pulmón/virología , Macaca mulatta , Masculino , Mesocricetus , Mucosa Nasal/inmunología , Mucosa Nasal/virología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Potencia de la Vacuna , Replicación ViralRESUMEN
Neutralizing antibody responses gradually wane after vaccination with mRNA-1273 against several variants of concern (VOC), and additional boost vaccinations may be required to sustain immunity and protection. Here, we evaluated the immune responses in nonhuman primates that received 100 µg of mRNA-1273 vaccine at 0 and 4 weeks and were boosted at week 29 with mRNA-1273 (homologous) or mRNA-1273.ß (heterologous), which encompasses the spike sequence of the B.1.351 (beta or ß) variant. Reciprocal ID 50 pseudovirus neutralizing antibody geometric mean titers (GMT) against live SARS-CoV-2 D614G and the ß variant, were 4700 and 765, respectively, at week 6, the peak of primary response, and 644 and 553, respectively, at a 5-month post-vaccination memory time point. Two weeks following homologous or heterologous boost ß-specific reciprocal ID 50 GMT were 5000 and 3000, respectively. At week 38, animals were challenged in the upper and lower airway with the ß variant. Two days post-challenge, viral replication was low to undetectable in both BAL and nasal swabs in most of the boosted animals. These data show that boosting with the homologous mRNA-1273 vaccine six months after primary immunization provides up to a 20-fold increase in neutralizing antibody responses across all VOC, which may be required to sustain high-level protection against severe disease, especially for at-risk populations. ONE-SENTENCE SUMMARY: mRNA-1273 boosted nonhuman primates have increased immune responses and are protected against SARS-CoV-2 beta infection.
RESUMEN
Neutralizing antibody responses gradually wane against several variants of concern (VOCs) after vaccination with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine messenger RNA-1273 (mRNA-1273). We evaluated the immune responses in nonhuman primates that received a primary vaccination series of mRNA-1273 and were boosted about 6 months later with either homologous mRNA-1273 or heterologous mRNA-1273.ß, which encompasses the spike sequence of the B.1.351 Beta variant. After boost, animals had increased neutralizing antibody responses across all VOCs, which was sustained for at least 8 weeks after boost. Nine weeks after boost, animals were challenged with the SARS-CoV-2 Beta variant. Viral replication was low to undetectable in bronchoalveolar lavage and significantly reduced in nasal swabs in all boosted animals, suggesting that booster vaccinations may be required to sustain immunity and protection.
Asunto(s)
Vacuna nCoV-2019 mRNA-1273/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunogenicidad Vacunal , SARS-CoV-2/inmunología , Eficacia de las Vacunas , Vacuna nCoV-2019 mRNA-1273/administración & dosificación , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/análisis , Anticuerpos Antivirales/sangre , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/virología , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Inmunidad Mucosa , Inmunización Secundaria , Macaca mulatta , Células B de Memoria/inmunología , Nariz/inmunología , Nariz/virología , ARN Viral/análisis , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Células T Auxiliares Foliculares/inmunología , Células TH1/inmunología , Replicación ViralRESUMEN
Adjuvanted soluble protein vaccines have been used extensively in humans for protection against various viral infections based on their robust induction of antibody responses. Here, soluble prefusion-stabilized spike trimers (preS dTM) from the severe acute respiratory syndrome coronavirus (SARS-CoV-2) were formulated with the adjuvant AS03 and administered twice to nonhuman primates (NHP). Binding and functional neutralization assays and systems serology revealed that NHP developed AS03-dependent multi-functional humoral responses that targeted multiple spike domains and bound to a variety of antibody FC receptors mediating effector functions in vitro. Pseudovirus and live virus neutralizing IC50 titers were on average greater than 1000 and significantly higher than a panel of human convalescent sera. NHP were challenged intranasally and intratracheally with a high dose (3×106 PFU) of SARS-CoV-2 (USA-WA1/2020 isolate). Two days post-challenge, vaccinated NHP showed rapid control of viral replication in both the upper and lower airways. Notably, vaccinated NHP also had increased spike-specific IgG antibody responses in the lung as early as 2 days post challenge. Moreover, vaccine-induced IgG mediated protection from SARS-CoV-2 challenge following passive transfer to hamsters. These data show that antibodies induced by the AS03-adjuvanted preS dTM vaccine are sufficient to mediate protection against SARS-CoV-2 and support the evaluation of this vaccine in human clinical trials.
RESUMEN
PURPOSE: To evaluate gut microbiome in relation to recent high-intensity sweetener consumption in healthy adults. METHODS: Thirty-one adults completed a four-day food record and provided a fecal sample on the fifth day. Bacterial community in the samples was analyzed using multitag pyrosequencing. Across consumers and nonconsumers of aspartame and acesulfame-K, bacterial abundance was compared using nonparametric statistics, and bacterial diversity was compared using UniFrac analysis. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was used to predict mean relative abundance of gene function. RESULTS: There were seven aspartame consumers and seven acesulfame-K consumers. Three individuals overlapped groups, consuming both sweeteners. There were no differences in median bacterial abundance (class or order) across consumers and nonconsumers of either sweetener. Overall bacterial diversity was different across nonconsumers and consumers of aspartame (P < .01) and acesulfame-K (P = .03). Mean predicted gene abundance did not differ across consumers and nonconsumers of aspartame or acesulfame-K. CONCLUSIONS: Bacterial abundance profiles and predicted gene function were not associated with recent dietary high-intensity sweetener consumption. However, bacterial diversity differed across consumers and nonconsumers. Given the increasing consumption of sweeteners and the role that the microbiome may have in chronic disease outcomes, work in further studies is warranted.