Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Virol ; 96(7): e29775, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38949184

RESUMEN

Dengue fever is a mosquito-borne viral disease caused by the dengue virus (DENV). It poses a public health threat globally and, while most people with dengue have mild symptoms or are asymptomatic, approximately 5% of affected individuals develop severe disease and need hospital care. However, knowledge of the molecular mechanisms underlying dengue infection and the interaction between the virus and its host remains limited. In the present study, we performed a quantitative proteomic and N-glycoproteomic analysis of serum from 19 patients with dengue and 11 healthy people. The results revealed distinct proteomic and N-glycoproteomic landscapes between the two groups. Notably, we report for the first time the changes in the serum N glycosylation pattern following dengue infection and provide abundant information on glycoproteins, glycosylation sites, and intact N-glycopeptides using recently developed site-specific glycoproteomic approaches. Furthermore, a series of key functional pathways in proteomic and N-glycoproteomic were identified. Collectively, our findings significantly improve understanding of host and DENV interactions and the general pathogenesis and pathology of DENV, laying a foundation for functional studies of glycosylation and glycan structures in dengue infection.


Asunto(s)
Virus del Dengue , Dengue , Glicoproteínas , Proteómica , Humanos , Dengue/sangre , Dengue/virología , Proteómica/métodos , Glicoproteínas/sangre , Glicosilación , Masculino , Femenino , Adulto , Proteoma/análisis , Persona de Mediana Edad
2.
Bioorg Chem ; 144: 107122, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278049

RESUMEN

Non-platinum metal-based complexes have good potential for cancer treatment. Here, we designed and synthesized five hydrazone copper(II) complexes, [Cu2(HL)2Cl2] 1A, [Cu2(HL)2(NO3)H2O]·NO3 2A, [Cu2(HL)2Br2] 3A, [Cu(L)pyridine] 1B and [Cu(HL)(pyridine)Br] 3B, and evaluated their anti-lung cancer activities. MTT experiments revealed that these copper(II) complexes exhibit higher anticancer activity than cisplatin. Mechanism studies revealed that complex 3A induced G1 phase cell cycle arrest, and induced cell apoptosis via reactive oxygen species (ROS)-mediated mitochondrial dysfunction. Scratch wound healing assay was also performed, revealing that complex 3A have good anti-cell migration activity. Hemolysis assays showed good blood biocompatibility of complex 3A. Furthermore, complex 3A can significantly inhibit the proliferation of A549 3D tumor spheroid. An in vivo anticancer study showed that complex 3A could delays the growth of A549 tumor xenografts with lower systemic toxicity. These results highlight the great possibility of developing highly active copper complexes as anti-lung cancer agents.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias Pulmonares , Humanos , Cobre/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Modelos Moleculares , Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Piridinas/farmacología , Apoptosis , Línea Celular Tumoral
3.
Molecules ; 29(19)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39407663

RESUMEN

Ultrasonic technology has drawn extensive interests for its great potential in marine antifouling applications. However, its effects on the adhesion behavior of marine fouling organisms on marine structures remain underexplored. This work investigated how ultrasonic treatment impacted the adhesion of Pseudoalteromonas on a gel-like marine epoxy primer. And the process parameters for ultrasonic treatment were optimized using response surface analysis with Design-Expert software 11. The results revealed that ultrasonic treatment disrupted the cellular structure of Pseudoalteromonas, causing the deformation and fragmentation of the cell membrane, leading to bacterial death. Additionally, ultrasonic treatment reduced the particle size and Zeta potential value of Pseudoalteromonas, which disrupted the stability of bacterial suspensions. It also increased the relative surface hydrophobicity of Pseudoalteromonas cells, resulting in a reduction in adhesion to the gel-like marine epoxy primer. This study demonstrated that ultrasonic treatment significantly disturbed the adhesion behavior of microorganisms like Pseudoalteromonas on the gel-like marine epoxy primer, which provided an effective approach for controlling marine biofouling.

4.
Respir Res ; 22(1): 203, 2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34243776

RESUMEN

BACKGROUND: Thousands of Coronavirus Disease 2019 (COVID-19) patients have been discharged from hospitals Persistent follow-up studies are required to evaluate the prevalence of post-COVID-19 fibrosis. METHODS: This study involves 462 laboratory-confirmed patients with COVID-19 who were admitted to Shenzhen Third People's Hospital from January 11, 2020 to April 26, 2020. A total of 457 patients underwent thin-section chest CT scans during the hospitalization or after discharge to identify the pulmonary lesion. A total of 287 patients were followed up from 90 to 150 days after the onset of the disease, and lung function tests were conducted about three months after the onset. The risk factors affecting the persistence of pulmonary fibrosis were identified through regression analysis and the prediction model of the persistence of pulmonary fibrosis was established. RESULTS: Parenchymal bands, irregular interfaces, reticulation and traction bronchiectasis were the most common CT features in all COVID-19 patients. During the 0-30, 31-60, 61-90, 91-120 and > 120 days after onset, 86.87%, 74.40%, 79.56%, 68.12% and 62.03% patients developed with pulmonary fibrosis and 4.53%, 19.61%, 18.02%, 38.30% and 48.98% patients reversed pulmonary fibrosis, respectively. It was observed that Age, BMI, Fever, and Highest PCT were predictive factors for sustaining fibrosis even after 90 days from onset. A predictive model of the persistence with pulmonary fibrosis was developed based-on the Logistic Regression method with an accuracy, PPV, NPV, Sensitivity and Specificity of the model of 76%, 71%, 79%, 67%, and 82%, respectively. More than half of the COVID-19 patients revealed abnormal conditions in lung function after 90 days from onset, and the ratio of abnormal lung function did not differ on a statistically significant level between the fibrotic and non-fibrotic groups. CONCLUSIONS: Persistent pulmonary fibrosis was more likely to develop in patients with older age, higher BMI, severe/critical condition, fever, a longer viral clearance time, pre-existing disease and delayed hospitalization. Fibrosis developed in COVID-19 patients could be reversed in about a third of the patients after 120 days from onset. The pulmonary function of less than half of COVID-19 patients could turn to normal condition after three months from onset. An effective prediction model with an average area under the curve (AUC) of 0.84 was established to predict the persistence of pulmonary fibrosis in COVID-19 patients for early diagnosis.


Asunto(s)
COVID-19/virología , Pulmón/virología , Alta del Paciente , Fibrosis Pulmonar/virología , SARS-CoV-2/patogenicidad , Adolescente , Adulto , COVID-19/complicaciones , COVID-19/diagnóstico , China , Femenino , Interacciones Huésped-Patógeno , Humanos , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Pronóstico , Fibrosis Pulmonar/diagnóstico por imagen , Fibrosis Pulmonar/fisiopatología , Pruebas de Función Respiratoria , Factores de Tiempo , Tomografía Computarizada por Rayos X , Adulto Joven
5.
Inflamm Res ; 69(6): 599-606, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32227274

RESUMEN

OBJECTIVE: This study aims to evaluate the correlation between viral clearance and blood biochemical index of 94 discharged patients with COVID-19 infection in Shenzhen Third People's Hospital, enrolled from Jan 5 to Feb 13, 2020. METHODS: The clinical and laboratory findings were extracted from the electronic medical records of the patients. The data were analysed and reviewed by a trained team of physicians. Information on clinical signs and symptoms, medical treatment, virus clearance, and laboratory parameters including interleukin 6 (IL-6) and C-reactive protein were collected. RESULTS: COVID-19 mRNA clearance ratio was identified significantly correlated with the decline of serum creatine kinase (CK) and lactate dehydrogenase (LDH) levels. Furthermore, COVID-19 mRNA clearance time was positively correlated with the length of hospital stay in patients treated with either IFN-α + lopinavir/ritonavir or IFN-α + lopinavir/ritonavir + ribavirin. CONCLUSIONS: Therapeutic regimens of IFN-α + lopinavir/ritonavir and IFN-α + lopinavir/ritonavir + ribavirin might be beneficial for treatment of COVID-19. Serum LDH or CK decline may predict a favorable response to treatment of COVID-19 infection.


Asunto(s)
Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/virología , Neumonía Viral/sangre , Neumonía Viral/virología , Adolescente , Adulto , Anciano , COVID-19 , Niño , Preescolar , China , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/fisiopatología , Creatina Quinasa/sangre , Combinación de Medicamentos , Humanos , Interferón-alfa/uso terapéutico , L-Lactato Deshidrogenasa/sangre , Lopinavir/uso terapéutico , Persona de Mediana Edad , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/fisiopatología , Reacción en Cadena de la Polimerasa , ARN Viral/análisis , Estudios Retrospectivos , Ritonavir/uso terapéutico , Adulto Joven
6.
J Nat Prod ; 79(12): 3039-3046, 2016 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-28006915

RESUMEN

Seventeen ß-dihydroagarofuran-type sesquiterpenes were isolated from the seeds of Celastrus monospermus, and, among them, 15 (1-15) were identified as new natural products. Nine isolates were evaluated for their lifespan-extending effect using the standard model animal nematode Caenorhabditis elegans. As a result, all of the tested compounds prolonged the lifespan of C. elegans when compared to the blank control group (p < 0.0001). Among them, celaspermin E (5) extended the average lifespan and maximum lifespan of C. elegans, with effects similar to those of rapamycin, a positive control that has been found experimentally to delay the aging process of yeasts, worms, fruit flies, and mice.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Celastrus/química , Semillas/química , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología , Animales , Longevidad/efectos de los fármacos , Estructura Molecular , Sesquiterpenos/química
7.
Exp Mol Med ; 56(4): 946-958, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38556546

RESUMEN

Acute liver injury is the basis of the pathogenesis of diverse liver diseases. However, the mechanism underlying liver injury is complex and not completely understood. In our study, we revealed that CERK, which phosphorylates ceramide to produce ceramide-1-phosphate (C1P), was the sphingolipid pathway-related protein that had the most significantly upregulated expression during acute liver injury. A functional study confirmed that CERK and C1P attenuate hepatic injury both in vitro and in vivo through antioxidant effects. Mechanistic studies have shown that CERK and C1P positively regulate the protein expression of NRF2, which is a crucial protein that helps maintain redox homeostasis. Furthermore, our results indicated that C1P disrupted the interaction between NRF2 and KEAP1 by competitively binding to KEAP1, which allowed for the nuclear translocation of NRF2. In addition, pull-down assays and molecular docking analyses revealed that C1P binds to the DGR domain of KEAP1, which allows it to maintain its interaction with NRF2. Importantly, these findings were verified in human primary hepatocytes and a mouse model of hepatic ischemia‒reperfusion injury. Taken together, our findings demonstrated that CERK-mediated C1P metabolism attenuates acute liver injury via the binding of C1P to the DGR domain of KEAP1 and subsequently the release and nuclear translocation of NRF2, which activates the transcription of cytoprotective and antioxidant genes. Our study suggested that the upregulation of CERK and C1P expression may serve as a potential antioxidant strategy to alleviate acute liver injury.


Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Fosfotransferasas (Aceptor de Grupo Alcohol) , Animales , Humanos , Masculino , Ratones , Ceramidas/metabolismo , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Simulación del Acoplamiento Molecular , Factor 2 Relacionado con NF-E2/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Unión Proteica
8.
Int J Biol Macromol ; 280(Pt 2): 135764, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299429

RESUMEN

Chronic hepatitis B virus (HBV) infection continues to pose a significant global health challenge. However, therapeutic measures for a cure are lacking in clinical practice. Manganese, an essential trace element, has garnered attention due to its potential to activate innate immune pathways and its significant role in antiviral and antitumor immunity. Yet, the specific impact of manganese on chronic hepatitis B has been largely unexplored. Our research reveals that manganese substantially inhibits HBV replication in hepatocellular carcinoma cells at non-toxic levels. This suppression occurs independently of well-known anti-HBV innate immune pathways, such as the cGAS-STING pathway. Mechanistically, manganese decreases HBV transcription by diminishing the levels of liver-specific transcription factors. Furthermore, it activates the mTOR pathway, enhancing HBsAg ubiquitination through the upregulation of the ubiquitin ligase ß-TrCP and increasing proteasome activity via the augmentation of its subunits, leading to a ubiquitin-dependent degradation of HBsAg. Significantly, our study also uncovers a notable clinical correlation between manganese levels and chronic hepatitis B infection. These findings position manganese as a critical element in diminishing HBV replication, offering a new direction in the management of chronic hepatitis B.

9.
Nat Commun ; 15(1): 467, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212606

RESUMEN

Dietary restriction (DR) delays aging, but the mechanism remains unclear. We identified polymorphisms in mtd, the fly homolog of OXR1, which influenced lifespan and mtd expression in response to DR. Knockdown in adulthood inhibited DR-mediated lifespan extension in female flies. We found that mtd/OXR1 expression declines with age and it interacts with the retromer, which regulates trafficking of proteins and lipids. Loss of mtd/OXR1 destabilized the retromer, causing improper protein trafficking and endolysosomal defects. Overexpression of retromer genes or pharmacological restabilization with R55 rescued lifespan and neurodegeneration in mtd-deficient flies and endolysosomal defects in fibroblasts from patients with lethal loss-of-function of OXR1 variants. Multi-omic analyses in flies and humans showed that decreased Mtd/OXR1 is associated with aging and neurological diseases. mtd/OXR1 overexpression rescued age-related visual decline and tauopathy in a fly model. Hence, OXR1 plays a conserved role in preserving retromer function and is critical for neuronal health and longevity.


Asunto(s)
Envejecimiento , Enfermedades del Sistema Nervioso , Humanos , Femenino , Envejecimiento/genética , Longevidad/genética , Neuronas/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Encéfalo/metabolismo , Restricción Calórica , Proteínas Mitocondriales/metabolismo
10.
RSC Adv ; 13(41): 28951-28963, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37795049

RESUMEN

The settlement of microorganisms is an unwanted process in various practical fields, where also the first attaching microorganisms could promote other bacterial adhesion, causing an acceleration of bioaccumulation on the solid surface and damage to the surface functions. Developing an advanced composite coating with anti-microorganism attachment features is still a big challenge, and the critical element in any such method is to find an efficient functional agent for use in the coating system that could extend the service period. MXenes have received increasing attentions owing to their unique layer structure and large specific surface area. Increasing studies have been devoted to the development of MXene/polymer composites with creatively designed structures to realize various specific functions. Herein, two-dimensional (2D) transition metal carbide material MXene as a carrier was etched and decorated with cellulose to enhance the anchor points to grasp functional Ag nanoparticles via a simple method. The MXene nanosheets (Ti3C2Tx) were modified by cellulose to graft hydroxy groups on their surface, and then they were incorporated into silver nanoparticles (Ag NPs). The results showed that the cellulose could increase the loading content of the Ag NPs on the MXene surface, and also could act as a stabilized material to form the composite filler MXene@cellulose@Ag NPs (MAC), which could serve as a functional agent. Furthermore, the obtained product MAC filler exhibited excellent dispersibility and stability among all the tested fillers (MXene and MA), and it could help avoid aggregation and promote homogenous dispersal in the coating network. Besides, MAC displayed outstanding antibacterial activities against E. coli and S. aureus at the same concentration among all the fillers. When the filler was embedded into the coating system, the composite coating PCB-MAC possessed abundant active Ag+ ions released by the Ag NPs, which could work against bacterial growth and achieve a favorable antibacterial inhibition effect. Therefore, we believe that the active MAC filler maintained high antibacterial efficiency, evincing its potential as a desirable agent for obtaining an excellent anti-adhesive behavior in numerous broad applications, such as the environment field or medical area.

11.
Nat Commun ; 14(1): 7683, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001113

RESUMEN

Dietary restriction is an effective anti-ageing intervention across species. However, the molecular mechanisms from the metabolic aspects of view are still underexplored. Here we show ACS-20 as a key mediator of dietary restriction on healthy ageing from a genetic screen of the C. elegans acyl-CoA synthetase family. ACS-20 functions in the epidermis during development to regulate dietary restriction-induced longevity. Functional transcriptomics studies reveal that elevated expression of PTR-8/Patched is responsible for the proteostasis and lifespan defects of acs-20. Furthermore, the conserved NHR-23 nuclear receptor serves as a transcriptional repressor of ptr-8 and a key regulator of dietary restriction-induced longevity. Mechanistically, a specific region in the ptr-8 promoter plays a key role in mediating the transcription regulation and lifespan extension under dietary restriction. Altogether, these findings identify a highly conserved lipid metabolism enzyme as a key mediator of dietary restriction-induced lifespan and healthspan extension and reveal the downstream transcriptional regulation mechanisms.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Restricción Calórica , Envejecimiento/genética , Factores de Transcripción/metabolismo , Longevidad/fisiología , Proteínas Portadoras/metabolismo
12.
MicroPubl Biol ; 20222022.
Artículo en Inglés | MEDLINE | ID: mdl-35903774

RESUMEN

We used CRISPR/Cas9 gene editing in C. elegans in order to fluorescently tag endogenous aconitase-2 (ACO-2). ACO-2 is a mitochondrially localized protein, and the aco-2::gfp strain enabled the examination of native mitochondrial morphology in live animals. Here we validate that the aco-2::gfp strain displays the prototypic changes in mitochondrial morphology known to occur during aging and upon paraquat (PQ) induced mitochondrial stress. We also provide evidence that the ACO-2::GFP reporter can serve as a superior means for tracking mitochondrial morphology than conventional MitoTracker dyes-especially in aged-worms.

13.
Front Pharmacol ; 13: 939573, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784723

RESUMEN

Background: The rapid worldwide spread of the Omicron variant of SARS-CoV-2 has unleashed a new wave of COVID-19 outbreaks. The efficacy of molnupiravir, an approved drug, is still unknown in patients infected with the Omicron variant. Objective: Evaluated the antiviral efficacy and safety of molnupiravir in patients infected with SARS-CoV-2 Omicron variant, with symptom duration within 5 days. Methods: We conducted a randomized, controlled trial involving patients with mild or moderate COVID-19. Patients were randomized to orally receive molnupiravir (800 mg) plus basic treatment or only basic treatment for 5 days (BID). The antiviral efficacy of the drug was evaluated using reverse transcriptase polymerase chain reaction. Results: Results showed that the time of viral RNA clearance (primary endpoint) was significantly decreased in the molnupiravir group (median, 9 days) compared to the control group (median, 10 days) (Log-Rank p = 0.0092). Of patients receiving molnupiravir, 18.42% achieved viral RNA clearance on day 5 of treatment, compared to the control group (0%) (p = 0.0092). On day 7, 40.79%, and 6.45% of patients in the molnupiravir and control groups, respectively, achieved viral RNA clearance (p = 0.0004). In addition, molnupiravir has a good safety profile, and no serious adverse events were reported. Conclusion: Molnupiravir significantly accelerated the SARS-CoV-2 Omicron RNA clearance in patients with COVID-19. Clinical Trial Registration: [chictr.org.cn], identifier [ChiCTR2200056817].

14.
Front Cell Dev Biol ; 9: 663037, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869229

RESUMEN

Periodontitis is an immune inflammatory disease that leads to progressive destruction of bone and connective tissue, accompanied by the dysfunction and even loss of periodontal ligament stem cells (PDLSCs). Pyroptosis mediated by gasdermin-D (GSDMD) participates in the pathogenesis of inflammatory diseases. However, whether pyroptosis mediates PDLSC loss, and inflammation triggered by pyroptosis is involved in the pathological progression of periodontitis remain unclear. Here, we found that PDLSCs suffered GSDMD-dependent pyroptosis to release interleukin-1ß (IL-1ß) during human periodontitis. Importantly, the increased IL-1ß level in gingival crevicular fluid was significantly correlated with periodontitis severity. The caspase-4/GSDMD-mediated pyroptosis caused by periodontal bacteria and cytoplasmic lipopolysaccharide (LPS) dominantly contributed to PDLSC loss. By releasing IL-1ß into the tissue microenvironment, pyroptotic PDLSCs inhibited osteoblastogenesis and promoted osteoclastogenesis, which exacerbated the pathological damage of periodontitis. Pharmacological inhibition of caspase-4 or IL-1ß antibody blockade in a rat periodontitis model lead to the significantly reduced loss of alveolar bone and periodontal ligament damage. Furthermore, Gsdmd deficiency alleviated periodontal inflammation and bone loss in mouse experimental periodontitis. These findings indicate that GSDMD-driven PDLSC pyroptosis and loss plays a pivotal role in the pathogenesis of periodontitis by increasing IL-1ß release, enhancing inflammation, and promoting osteoclastogenesis.

15.
Aging (Albany NY) ; 12(24): 25700-25717, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33232266

RESUMEN

The antagonistic pleiotropy theory of aging suggests that genes essential for growth and development are likely to modulate aging later in life. Previous studies in C. elegans demonstrate that inhibition of certain developmentally essential genes during adulthood leads to significant lifespan extension. PAR-1, a highly conserved serine/threonine kinase, functions as a key cellular polarity regulator during the embryonic development. However, the role of PAR-1 during adulthood remains unknown. Here we show that inhibition of par-1 either by a temperature-sensitive mutant or by RNAi knockdown only during adulthood is sufficient to extend lifespan in C. elegans. Inhibition of par-1 also improves healthspan, as indicated by increased stress resistance, enhanced proteotoxicity resistance, as well as reduced muscular function decline over time. Additionally, tissue-enriched RNAi knockdown analysis reveals that PAR-1 mainly functions in the epidermis to regulate lifespan. Further genetic epistatic and molecular studies demonstrate that the effect of par-1 on lifespan requires the AMP-activated protein kinase (AMPK), and RNAi knockdown of par-1 results in age-dependent AMPK activation and reduced lipid accumulation in the metabolic tissue. Taken together, our findings reveal a previously undescribed function of PAR-1 in adulthood, which will help to understand the molecular links between development and aging.


Asunto(s)
Adenilato Quinasa/metabolismo , Envejecimiento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Longevidad/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Activación Enzimática/fisiología , Técnicas de Silenciamiento del Gen
16.
J Inflamm Res ; 13: 985-993, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33262634

RESUMEN

PURPOSE: Novel coronavirus disease has become such an escalating epidemic that the exponential growth of infected patients has overloaded the health-care systems in many countries. Determination of early assessments for patients with a risk of clinical deterioration would benefit the management of COVID-19 outbreaks. PATIENTS AND METHODS: A total of 214 confirmed COVID-19 patients were enrolled from January 11th to February 11th 2020. Medical records including laboratory parameters, clinical outcomes and other characteristics of the admitted patients were analyzed retrospectively. RESULTS: The critical patients experienced a significantly prolonged onset-admission interval and presented with lymphopenia (r=-0.547, p=0.015) and lower albumin level (p<0.001) 6 days after symptom onset. Early admission of critical patients significantly reduced the duration of hormone therapy. Starting from 9 days of hospital stay, the reduced lymphocyte counts exhibited linear growth. Furthermore, on days 9 and 12, significant correlations were demonstrated between immunological manifestations and duration of hormone therapy in critical patients, and length of hospital stay in severe patients. In addition, the virus negative conversion rate was more significantly correlated with increased lymphocytes in critical patients. CONCLUSION: Early intervention, within 6 days of symptom onset, benefited patients' recovery from critical illness. The 9-12 days of hospital care represented a valuable window during which to evaluate the therapeutic effects on physical recovery and virus clearance.

17.
EBioMedicine ; 52: 102652, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32058942

RESUMEN

BACKGROUND: Alteration of commensal bacterial composition is associated with many inflammatory diseases. However, few studies have pinpointed the specific bacterial genes that may suppress host immune responses against microbes and maintain homeostasis in the host intestine. METHODS: High-throughput screening was performed in Caenorhabditis elegans with a single gene knockout ut screening was performed in Caenorhabditis elegans with a single gene knockout Escherichia coli (E. coli) library and identified the immune suppression gene blc. The coding sequences of blc among different kinds of E. coli strains were aligned to identify the single nucleotide polymorphisms (SNPs). Physiological and biochemical experiments were performed in C. elegans and mice to explore the function of the blc variant. FINDINGS: By screening 3983 E. coli mutants, we discovered that 9 bacterial genes, when deleted, activate innate immunity in the host C. elegans. Among these 9 genes, the gene encoding blc showed a distinctive SNP in many clinically pathogenic bacteria. We found that bacteria with this SNP, which converts Blc G84 to Blc E84, are highly enriched in the faeces of patients with inflammatory bowel disease (IBD). Exposure to BlcE84-encoding bacteria resulted in epithelial barrier disruption and immune activation in both worms and mice. Detailed analysis indicated that infection with BlcE84-encoding bacteria causes a significant decrease in LPE levels in the intestine and subsequently disrupts gut epithelial integrity in mice. Consistently, the levels of LPE in patients with IBD are significantly lower than those in healthy people. Finally, supplementation with LPE, which activates LPA1/PLCß/PKC signaling, reversed the defects induced by BlcE84-encoding bacteria. INTERPRETATION: Our results identified a novel bacterial gene, blc, in E. coli that regulates host gut integrity and immunity. FUND: The Ministry of Science and Technology of China; the National Natural Science Foundation of China; and the Natural Science Foundation of Jiangsu Province.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Lipocalinas/genética , Lisofosfolípidos/metabolismo , Polimorfismo de Nucleótido Simple , Animales , Secuencia de Bases , Biomarcadores , Línea Celular , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Proteínas de Escherichia coli/genética , Homeostasis , Interacciones Huésped-Patógeno/inmunología , Humanos , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Lisofosfolípidos/química , Masculino , Ratones , Mutación , Permeabilidad
18.
Infect Dis Poverty ; 9(1): 163, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33261654

RESUMEN

BACKGROUND: There is an urgent need to better understand the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for that the coronavirus disease 2019 (COVID-19) continues to cause considerable morbidity and mortality worldwide. This paper was to differentiate COVID-19 from other respiratory infectious diseases such as avian-origin influenza A (H7N9) and influenza A (H1N1) virus infections. METHODS: We included patients who had been hospitalized with laboratory-confirmed infection by SARS-CoV-2 (n = 83), H7N9 (n = 36), H1N1 (n = 44) viruses. Clinical presentation, chest CT features, and progression of patients were compared. We used the Logistic regression model to explore the possible risk factors. RESULTS: Both COVID-19 and H7N9 patients had a longer duration of hospitalization than H1N1 patients (P < 0.01), a higher complication rate, and more severe cases than H1N1 patients. H7N9 patients had higher hospitalization-fatality ratio than COVID-19 patients (P = 0.01). H7N9 patients had similar patterns of lymphopenia, neutrophilia, elevated alanine aminotransferase, C-reactive protein, lactate dehydrogenase, and those seen in H1N1 patients, which were all significantly different from patients with COVID-19 (P < 0.01). Either H7N9 or H1N1 patients had more obvious symptoms, like fever, fatigue, yellow sputum, and myalgia than COVID-19 patients (P < 0.01). The mean duration of viral shedding was 9.5 days for SARS-CoV-2 vs 9.9 days for H7N9 (P = 0.78). For severe cases, the meantime from illness onset to severity was 8.0 days for COVID-19 vs 5.2 days for H7N9 (P < 0.01), the comorbidity of chronic heart disease was more common in the COVID-19 patients than H7N9 (P = 0.02). Multivariate analysis showed that chronic heart disease was a possible risk factor (OR > 1) for COVID-19, compared with H1N1 and H7N9. CONCLUSIONS: The proportion of severe cases were higher for H7N9 and SARS-CoV-2 infections, compared with H1N1. The meantime from illness onset to severity was shorter for H7N9. Chronic heart disease was a possible risk factor for COVID-19.The comparison may provide the rationale for strategies of isolation and treatment of infected patients in the future.


Asunto(s)
COVID-19/patología , COVID-19/virología , Gripe Humana/patología , Gripe Humana/virología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/diagnóstico , COVID-19/mortalidad , Niño , Preescolar , Comorbilidad , Progresión de la Enfermedad , Femenino , Hospitalización , Humanos , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Humana/diagnóstico , Gripe Humana/mortalidad , Pulmón/diagnóstico por imagen , Pulmón/patología , Masculino , Persona de Mediana Edad , Factores de Riesgo , SARS-CoV-2/patogenicidad , Esparcimiento de Virus , Adulto Joven
19.
Cell Rep ; 28(4): 1050-1062.e6, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31340143

RESUMEN

Reduced mRNA translation delays aging, but the underlying mechanisms remain underexplored. Mutations in both DAF-2 (IGF-1 receptor) and RSKS-1 (ribosomal S6 kinase/S6K) cause synergistic lifespan extension in C. elegans. To understand the roles of translational regulation in this process, we performed polysomal profiling and identified translationally regulated ribosomal and cytochrome c (CYC-2.1) genes as key mediators of longevity. cyc-2.1 knockdown significantly extends lifespan by activating the intestinal mitochondrial unfolded protein response (UPRmt), mitochondrial fission, and AMP-activated kinase (AMPK). The germline serves as the key tissue for cyc-2.1 to regulate lifespan, and germline-specific cyc-2.1 knockdown non-autonomously activates intestinal UPRmt and AMPK. Furthermore, the RNA-binding protein GLD-1-mediated translational repression of cyc-2.1 in the germline is important for the non-autonomous activation of UPRmt and synergistic longevity of the daf-2 rsks-1 mutant. Altogether, these results illustrate a translationally regulated non-autonomous mitochondrial stress response mechanism in the modulation of lifespan by insulin-like signaling and S6K.


Asunto(s)
Caenorhabditis elegans/fisiología , Longevidad/fisiología , Mitocondrias/metabolismo , Biosíntesis de Proteínas , Estrés Fisiológico , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulación hacia Abajo/genética , Activación Enzimática , Genes de Helminto , Genoma , Células Germinativas/metabolismo , Dinámicas Mitocondriales , Mutación/genética , Especificidad de Órganos , Transducción de Señal , Respuesta de Proteína Desplegada
20.
Sci China Life Sci ; 58(4): 352-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25794944

RESUMEN

Dietary restriction (DR) is one of the most robust environmental manipulations that not only extend life span but also delay the onset of age-related diseases in almost every species examined. Caenorhabditis elegans plays an important role in aging studies due to its simple life cycle, easy genetic manipulations and highly conserved genome. Recent studies have demonstrated that the beneficial effects of DR are mediated by the highly conserved transcription factors and signaling pathways in C. elegans. Here we review recent progress in the methodology and molecular mechanisms of DR using C. elegans as a model, as well as prospects for future research.


Asunto(s)
Envejecimiento/fisiología , Caenorhabditis elegans/fisiología , Dieta , Animales , Caenorhabditis elegans/genética , Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA