Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cogn Neurosci ; 33(8): 1563-1580, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34496375

RESUMEN

According to embodied theories, motor and language processing bidirectionally interact: Motor activation modulates behavior in lexico-semantic tasks (semantic resonance), and understanding motor-related words entails activation of the corresponding motor brain areas (motor resonance). Whereas many studies investigated such interaction in the first language (L1), only few did so in a second language (L2), focusing on motor resonance. Here, we directly compared L1 and a late L2, for the first time both in terms of semantic and motor resonance and both in terms of magnitude and timing, by taking advantage of single-pulse TMS. Twenty-five bilinguals judged, in each language, whether hand motor-related ("grasp") and non-motor-related verbs ("believe"), were physical or mental. Meanwhile, we applied TMS on the hand motor cortex at 125, 275, 350, and 500 msec post verb onset, and recorded behavioral responses and TMS-induced motor evoked potentials. TMS induced faster responses for L1 versus L2 motor and nonmotor verbs at 125 msec (three-way interaction ß = -0.0442, 95% CI [0.0814, -0.0070]), showing a semantic resonance effect at an early stage of word processing in L1 but not in L2. Concerning motor resonance, TMS-induced motor evoked potentials at 275 msec revealed higher motor cortex excitability for L2 versus L1 processing (two-way interaction ß = 0.095, 95% CI [0.017, 0.173]). These findings confirm action-language interaction at early stages of word recognition, provide further evidence that L1 and L2 are differently embodied, and call for an update of existing models of bilingualism and embodiment, concerning both language representations and processing.


Asunto(s)
Multilingüismo , Semántica , Lenguaje , Fenómenos Magnéticos , Estimulación Magnética Transcraneal
2.
Brain Topogr ; 34(1): 29-40, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33161471

RESUMEN

The use of electroencephalography (EEG) to study overt speech production has increased substantially in the past 15 years and the alignment of evoked potential (ERPs) on the response onset has become an extremely useful method to target "latest" stages of speech production. Yet, response-locked ERPs raise a methodological issue: on which event should the point of alignment be placed? Response-locked ERPs are usually aligned to the vocal (acoustic) onset, although it is well known that articulatory movements may start up to a hundred milliseconds prior to the acoustic onset and that this "articulatory onset to acoustic onset interval" (AAI) depends on the phoneme properties. Given the previously reported difficulties to measure the AAI, the purpose of this study was to determine if the AAI could be reliably detected with EEG-microstates. High-density EEG was recorded during delayed speech production of monosyllabic pseudowords with four different onset consonants. Whereas the acoustic response onsets varied depending on the onset consonant, the response-locked spatiotemporal EEG analysis revealed a clear asynchrony of the same sequence of microstates across onset consonants. A specific microstate, the latest observed in the ERPs locked to the vocal onset, presented longer duration for phonemes with longer acoustic response onsets. Converging evidences seemed to confirm that this microstate may be related to the articulatory onset of motor execution: its scalp topography corresponded to those previously associated with muscle activity and source localization highlighted the involvement of motor areas. Finally, the analyses on the duration of such microstate in single trials further fit with the AAI intervals for specific phonemes reported in previous studies. These results thus suggest that a particular ERP-microstate is a reliable index of articulation onset and of the AAI.


Asunto(s)
Percepción del Habla , Voz , Electroencefalografía , Potenciales Evocados , Habla
3.
J Speech Lang Hear Res ; : 1-7, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133834

RESUMEN

PURPOSE: The production of speech-like sequences composed of varying syllables has been reported to achieve higher syllable rates than the production of repeated syllables (commonly designed as sequential motion rate [SMR] and alternating motion rate [AMR] tasks, respectively). The faster rate for SMR relative to AMR sequences is explained by different interpretative hypotheses, which remain empirically unexplored. In the present study, we aimed to investigate whether the high syllable rates of SMR sequences are due to the specific sequences used in most studies that involve front-to-back articulatory movements. METHOD: Syllable rates of SMR sequences composed of different articulatory trajectories (i.e., labial-alveolar-velar [/pateko/], alveolar-velar-labial [/tekopa/], and velar-labial-alveolar [/kopate/]) were compared with those of the AMR sequences /papapa/, /tetete/, and /kokoko/ in 20 participants. RESULTS: The results show higher syllable rates for each of the three SMR sequences as compared to AMR, suggesting that the trajectory of the articulatory movements in the sequential sequences is not the key to achieving higher syllable rates. CONCLUSION: The syllable rate advantage for SMR over AMR sequences is not explained by the articulatory trajectories included in the former task, indicating that the front-to-back movements generally included in SMR sequences (i.e., /pataka/) are not decisive in achieving a higher syllable rate.

4.
Brain Sci ; 13(4)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37190620

RESUMEN

Oral diadochokinetic (DDK) tasks are common research and clinical tools used to test oromotor skills across different age groups. They include alternating motion rate (AMR) and sequential motion rate (SMR) tasks. AMR tasks involve repeating a single syllable, whereas SMR tasks involve repeating varying syllables. DDK performance is mostly discussed regarding the increasing rates of AMR and SMR tasks from childhood to adulthood, although less attention is given to the performance differences between SMR and AMR tasks across age groups. Here, AMR and SMR syllabic rates were contrasted in three populations: 7-9-year-old children, 14-16-year-old adolescents and 20-30-year-old adults. The results revealed similar syllabic rates for the two DDK tasks in children, whereas adolescents and adults achieved faster SMR rates. Acoustic analyses showed similarities in prosodic features between AMR and SMR sequences and in anticipatory coarticulation in the SMR sequences in all age groups. However, a lower degree of coarticulation was observed in children relative to adults. Adolescents, on the contrary, showed an adult-like pattern. These findings suggest that SMR tasks may be more sensitive to age-related changes in oromotor skills than AMR tasks and that greater gestural overlap across varying syllables may be a factor in achieving higher rates in SMR tasks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA