Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39069172

RESUMEN

BACKGROUND: Existing therapeutic strategies are challenged by long times to achieve effect and often require frequent administration. Peanut-allergic individuals would benefit from a therapeutic that provides rapid protection against accidental exposure within days of administration while carrying little risk of adverse reactions. OBJECTIVE: Guided by the repertoire of human IgE mAbs from allergic individuals, we sought to develop a treatment approach leveraging the known protective effects of allergen-specific IgG4 antibodies. METHODS: We applied our single-cell RNA-sequencing SEQ SIFTER platform (IgGenix, Inc, South San Francisco, Calif) to whole blood samples from peanut-allergic individuals to discover IgE mAbs. These were then class-switched by replacing the IgE constant region with IgG4 while retaining the allergen-specific variable regions. In vitro mast cell activation tests, basophil activation tests, ELISAs, and an in vivo peanut allergy mouse model were used to evaluate the specificity, affinity, and activity of these recombinant IgG4 mAbs. RESULTS: We determined that human peanut-specific IgE mAbs predominantly target immunodominant epitopes on Ara h 2 and Ara h 6 and that recombinant IgG4 mAbs effectively block these epitopes. IGNX001, a mixture of 2 such high-affinity IgG4 mAbs, provided robust protection against peanut-mediated mast cell activation in vitro as well as against anaphylaxis upon intragastric peanut challenge in a peanut allergy mouse model. CONCLUSIONS: We developed a peanut-specific IgG4 antibody therapeutic with convincing preclinical efficacy starting from a large repertoire of human IgE mAbs from demographically and geographically diverse individuals. These results warrant further clinical investigation of IGNX001 and underscore the opportunity for the application of this therapeutic development strategy in other food and environmental allergies.

2.
Clin Exp Allergy ; 51(10): 1361-1373, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33999457

RESUMEN

BACKGROUND: Atopic diseases are an increasing problem that involve both immediate hypersensitivity reactions mediated by IgE and unique cellular inflammation. Many forms of specific immunotherapy involve the administration of allergen to suppress allergic immune responses but are focused on IgE-mediated reactions. In contrast, the effect of allergen-specific immunotherapy on allergic inflammation is complex, not entirely consistent and not well understood. We have previously demonstrated the ability of allergen administered in a nanoemulsion (NE) mucosal adjuvant to suppress IgE-mediated allergic responses and protect from allergen challenge in murine food allergy models. This activity was associated with decreases in allergen-specific IL-10 and reductions in allergic cytokines and increases in regulatory T cells. OBJECTIVE: Here, we extend these studies to using 2 distinct models, the ovalbumin (OVA) and cockroach (CRA) models of allergic airway disease, which are based predominantly on allergic inflammation. METHODS: Acute or chronic allergic airway disease was induced in mice using ovalbumin and cockroach allergen models. Mice received three therapeutic immunizations with allergen in NE, and reactivity to airway challenge was determined. RESULTS: Therapeutic immunization with cockroach or OVA allergen in NE markedly reduced pathology after airway challenge. The 2 models demonstrated protection from allergen challenge-induced pathology that was associated with suppression of Th2-polarized immune responses in the lung. In addition, the reduction in ILC2 numbers in the lungs of allergic mice along with reduction in epithelial cell alarmins, IL-25 and IL-33, suggests an overall change in the lung immune environment induced by the NE immunization protocol. CONCLUSIONS AND CLINICAL RELEVANCE: These results demonstrate that suppression of allergic airway inflammation and bronchial hyper-reactivity can be achieved using allergen-specific immunotherapy without significant reductions in allergen-specific IgE and suggest that ILC2 cells may be critical targets for this activity.


Asunto(s)
Alérgenos , Hipersensibilidad , Animales , Humanos , Inmunidad Innata , Inmunoglobulina E , Linfocitos , Ratones
3.
Mol Pharm ; 18(2): 679-698, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32491861

RESUMEN

Current influenza virus vaccines are focused on humoral immunity and are limited by the short duration of protection, narrow cross-strain efficacy, and suboptimal immunogenicity. Here, we combined two chemically and biologically distinct adjuvants, an oil-in-water nanoemulsion (NE) and RNA-based agonists of RIG-I, to determine whether the diverse mechanisms of these adjuvants could lead to improved immunogenicity and breadth of protection against the influenza virus. NE activates TLRs, stimulates immunogenic apoptosis, and enhances cellular antigen uptake, leading to a balanced TH1/TH2/TH17 response when administered intranasally. RIG-I agonists included RNAs derived from Sendai and influenza viral defective interfering RNAs (IVT DI, 3php, respectively) and RIG-I/TLR3 agonist, poly(I:C) (pIC), which induce IFN-Is and TH1-polarized responses. NE/RNA combined adjuvants potentially allow for costimulation of multiple innate immune receptor pathways, more closely mimicking patterns of activation occurring during natural viral infection. Mice intranasally immunized with inactivated A/Puerto Rico/8/1934 (H1N1) (PR/8) adjuvanted with NE/IVT DI or NE/3php (but not NE/pIC) showed synergistic enhancement of systemic PR/8-specific IgG with significantly greater avidity and virus neutralization activity than the individual adjuvants. Notably, NE/IVT DI induced protective neutralizing titers after a single immunization. Hemagglutinin stem-specific antibodies were also improved, allowing recognition of heterologous and heterosubtypic hemagglutinins. All NE/RNAs elicited substantial PR/8-specific sIgA. Finally, a unique cellular response with enhanced TH1/TH17 immunity was induced with the NE/RNAs. These results demonstrate that the enhanced immunogenicity of the adjuvant combinations was synergistic and not simply additive, highlighting the potential value of a combined adjuvant approach for improving the efficacy of vaccination against the influenza virus.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Portadores de Fármacos/química , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , ARN Interferente Pequeño/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Administración Intranasal , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Perros , Emulsiones , Femenino , Humanos , Inmunidad Celular , Inmunidad Humoral , Inmunidad Mucosa , Inmunogenicidad Vacunal , Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Ratones , Nanopartículas/química , Poli I-C/administración & dosificación , Cultivo Primario de Células , ARN Interferente Pequeño/inmunología , Vacunación/métodos
4.
Allergy ; 75(4): 872-881, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31557317

RESUMEN

BACKGROUND: Immunotherapy for food allergy requires prolonged treatment protocols and, in most cases, does not lead to durable modulation of the allergic immune response. We have demonstrated an intranasal (IN) nanoemulsion adjuvant that redirects allergen-specific Th2 responses toward Th1 and Th17 immunity, and protects from allergen challenge after only 2-4 monthly administrations. Here, we investigate the ability of this technology to provide long-term modulation of allergy in a murine model of cow's milk allergy. METHODS: Six weeks after sensitization to bovine casein, mice received four, monthly IN immunizations with nanoemulsion formulated with casein. Protection from casein challenge was assessed at 4 and 16 weeks after the final vaccine administration. RESULTS: The NE vaccine significantly blunted the physiological responses to allergen challenge, and this effect persisted for at least 16 weeks. The protection from challenge was associated with the suppression of casein-specific Th2 immunity and induced Th1 and Th17 cytokines as well as induction of IL-10. Of interest, while immunized animals showed significantly decreased Th2 cytokine responses, cow's milk-specific IgE remained elevated in the serum at levels associated with reactivity in control sensitized animals. Protection was associated with suppressed mast cell activation and markedly reduced mast cell infiltration into the small intestine. CONCLUSION: The sustained unresponsiveness of at least 16 weeks after vaccination suggests that the nanoemulsion vaccine alters the allergic phenotype in a persistent manner different from traditional desensitization, and this leads to long-term suppressive effects on allergic disease without eliminating serum IgE.


Asunto(s)
Hipersensibilidad a la Leche , Vacunas , Animales , Bovinos , Modelos Animales de Enfermedad , Femenino , Inmunidad , Inmunomodulación , Ratones , Hipersensibilidad a la Leche/prevención & control , Nanoestructuras
5.
J Allergy Clin Immunol ; 141(6): 2121-2131, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29655584

RESUMEN

BACKGROUND: Immunotherapy for food allergies involves progressive increased exposures to food that result in desensitization to food allergens in some subjects but not tolerance to the food. Therefore new approaches to suppress allergic immunity to food are necessary. Previously, we demonstrated that intranasal immunization with a nanoemulsion (NE) adjuvant induces robust mucosal antibody and TH17-polarized immunity, as well as systemic TH1-biased cellular immunity with suppression of pre-existing TH2-biased immunity. OBJECTIVE: We hypothesized that immunization with food in conjunction with the nanoemulsion adjuvant could lead to modulation of allergic reactions in food allergy by altering pre-existing allergic immunity and enhancing mucosal immunity. METHODS: Mice were sensitized to peanut with aluminum hydroxide or cholera toxin. The animals were then administered 3 monthly intranasal immunizations with peanut in the nanoemulsion adjuvant or saline. Mice were then challenged with peanut to examine allergen reactivity. RESULTS: The NE intranasal immunizations resulted in marked decreases in TH2 cytokine, IgG1, and IgE levels, whereas TH1 and mucosal TH17 immune responses were increased. After allergen challenge, these mice showed significant reductions in allergic hypersensitivity. Additionally, the NE immunizations significantly increased antigen-specific IL-10 production and regulatory T-cell counts, and the protection induced by NE was dependent in part on IL-10. Control animals immunized with intranasal peanut in saline had no modulation of their allergic response. CONCLUSIONS: NE adjuvant-mediated induction of mucosal TH17 and systemic TH1-biased immunity can suppress TH2-mediated allergy through multiple mechanisms and protect against anaphylaxis. These results suggest the potential therapeutic utility of this approach in the setting of food allergy.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Desensibilización Inmunológica/métodos , Hipersensibilidad al Cacahuete/inmunología , Células Th2/inmunología , Administración Intranasal , Animales , Modelos Animales de Enfermedad , Emulsiones , Femenino , Ratones , Nanoconjugados/administración & dosificación , Células Th2/efectos de los fármacos
6.
bioRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38586014

RESUMEN

Current COVID-19 mRNA vaccines delivered intramuscularly (IM) induce effective systemic immunity, but with suboptimal immunity at mucosal sites, limiting their ability to impart sterilizing immunity. There is strong interest in rerouting immune responses induced in the periphery by parenteral vaccination to the portal entry site of respiratory viruses, such as SARS-CoV-2, by mucosal vaccination. We previously demonstrated the combination adjuvant, NE/IVT, consisting of a nanoemulsion (NE) and an RNA-based RIG-I agonist (IVT) induces potent systemic and mucosal immune responses in protein-based SARS-CoV-2 vaccines administered intranasally (IN). Herein, we demonstrate priming IM with mRNA followed by heterologous IN boosting with NE/IVT adjuvanted recombinant antigen induces strong mucosal and systemic antibody responses and enhances antigen-specific T cell responses in mucosa-draining lymph nodes compared to IM/IM and IN/IN prime/boost regimens. While all regimens induced cross-neutralizing antibodies against divergent variants and sterilizing immunity in the lungs of challenged mice, mucosal vaccination, either as homologous prime/boost or heterologous IN boost after IM mRNA prime was required to impart sterilizing immunity in the upper respiratory tract. Our data demonstrate the benefit of hybrid regimens whereby strong immune responses primed via IM vaccination are rerouted by IN vaccination to mucosal sites to provide optimal protection to SARS-CoV-2.

7.
Adv Healthc Mater ; : e2400237, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691819

RESUMEN

Food allergy is a prevalent, potentially deadly disease caused by inadvertent sensitization to benign food antigens. Pathogenic Th2 cells are a major driver for disease, and allergen-specific immunotherapies (AIT) aim to increase the allergen threshold required to elicit severe allergic symptoms. However, the majority of AIT approaches require lengthy treatments and convey transient disease suppression, likely due to insufficient targeting of pathogenic Th2 responses. Here, the ability of allergen-encapsulating nanoparticles to directly suppress pathogenic Th2 responses and reactivity is investigated in a mouse model of food allergy. NPs associate with pro-tolerogenic antigen presenting cells, provoking accumulation of antigen-specific, functionally suppressive regulatory T cells in the small intestine lamina propria. Two intravenous doses of allergen encapsulated in poly(lactide-co-glycolide) nanoparticles (NPs) significantly reduces oral food challenge (OFC)-induced anaphylaxis. Importantly, NP treatment alters the fates of pathogenic allergen-specific Th2 cells, reprogramming these cells toward CD25+FoxP3+ regulatory and CD73+FR4+ anergic phenotypes. NP-mediated reductions in the frequency of effector cells in the gut and mast cell degranulation following OFC are also demonstrated. These studies reveal mechanisms by which an allergen-encapsulating NP therapy and, more broadly, allergen-specific immunotherapies, can rapidly attenuate allergic responses by targeting pathogenic Th2 cells.

8.
Immunohorizons ; 7(6): 480-492, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37341756

RESUMEN

Vitamin A and its biologically active metabolites, all-trans and 9-cis retinoic acid (RA), are thought to be important in generating and modulating immune function. However, RA modulates the function of many types of immune cells, and its specific role in dendritic cell (DC) activation, Ag presentation, and T cell effector function has not been fully characterized. Because RA works primarily through RA receptor (RAR)α, we examined mice with a myeloid cell-specific defect in RA signaling. These transgenic mice have a CD11c-cre-driven expression of a truncated form of RARα that specifically blocks the signaling of all forms of RARs in myeloid cells. This defect results in abnormal DC function, with impaired DC maturation and activation, and reduced Ag uptake and processing. These DC abnormalities were associated with a reduced ability to mount Ag-specific T cell responses to immunization despite having normally functioning T cells. In contrast, the loss of DC-specific RA signaling did not significantly alter levels of Ag-specific Abs postimmunization and resulted in an increase in bronchial IgA. Our findings indicate that RA signaling in DCs is crucial for immune activation, and its absence impairs the development of Ag-specific effector functions of T cell immunity.


Asunto(s)
Linfocitos T , Tretinoina , Ratones , Animales , Tretinoina/farmacología , Tretinoina/metabolismo , Linfocitos T/metabolismo , Diferenciación Celular , Transducción de Señal , Ratones Transgénicos , Células Dendríticas
9.
Res Sq ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36711479

RESUMEN

Multiple FDA-approved SARS-CoV-2 vaccines provide excellent protection against severe disease. Despite this, immunity can wane relatively fast, particularly in the elderly and novel viral variants capable of evading infection- and vaccination-induced immunity continue to emerge. Intranasal (IN) vaccination more effectively induces mucosal immune responses than parenteral vaccines, which would improve protection and reduce viral transmission. Here, we developed a rationally designed IN adjuvant consisting of a combined nanoemulsion (NE)-based adjuvant and an RNA-based RIG-I agonist (IVT DI) to drive more robust, broadly protective antibody and T cell responses. We previously demonstrated this combination adjuvant (NE/IVT) potently induces protective immunity through synergistic activation of an array of innate receptors. We now demonstrate that NE/IVT with the SARS-CoV-2 receptor binding domain (RBD), induces robust and durable humoral, mucosal, and cellular immune responses of equivalent magnitude and quality in young and aged mice. This contrasted with the MF59-like intramuscular adjuvant, Addavax, which showed a marked decrease in immunogenicity with age. Robust antigen-specific IFNγ/IL-2/TNF-α was induced in both young and aged NE/IVT-immunized animals, which is significant as their reduced production is associated with suboptimal protective immunity in the elderly. These findings highlight the potential of adjuvanted mucosal vaccines for improving protection against COVID-19.

10.
NPJ Vaccines ; 8(1): 96, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386041

RESUMEN

Multiple FDA-approved SARS-CoV-2 vaccines currently provide excellent protection against severe disease. Despite this, immunity can wane relatively fast, particularly in the elderly and novel viral variants capable of evading infection- and vaccination-induced immunity continue to emerge. Intranasal (IN) vaccination more effectively induces mucosal immune responses than parenteral vaccines, which would improve protection and reduce viral transmission. Here, we developed a rationally designed IN adjuvant consisting of a combined nanoemulsion (NE)-based adjuvant and an RNA-based RIG-I agonist (IVT DI) to drive more robust, broadly protective antibody and T cell responses. We previously demonstrated this combination adjuvant (NE/IVT) potently induces protective immunity through synergistic activation of an array of innate receptors. We now demonstrate that NE/IVT with the SARS-CoV-2 receptor binding domain (RBD), induces robust and durable humoral, mucosal, and cellular immune responses of equivalent magnitude and quality in young and aged mice. This contrasted with the MF59-like intramuscular adjuvant, Addavax, which showed a decrease in immunogenicity with age. Robust antigen-specific IFN-γ/IL-2/TNF-α was induced in both young and aged NE/IVT-immunized animals, which is significant as their reduced production is associated with suboptimal protective immunity in the elderly. These findings highlight the potential of adjuvanted mucosal vaccines for improving protection against COVID-19.

11.
Front Allergy ; 3: 829605, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386645

RESUMEN

Food allergy is a growing health concern worldwide. Current allergen-specific immunotherapy (AIT) approaches require frequent dosing over extended periods of time and may induce anaphylaxis due to allergen-effector cell interactions. A critical need remains to develop novel approaches that refine AIT for the treatment of food allergies. Previous studies show that poly(lactide-co-glycolide) (PLG) nanoscale particles (NP) effectively suppress Th1- and Th17-driven immune pathologies. However, their ability to suppress the distinct Th2-polarized immune responses driving food allergy are unknown. Herein, we describe the safety and efficacy of NPs containing encapsulated peanut allergen in desensitizing murine models of peanut allergy. Peanut extract encapsulation allowed for the safe intravenous delivery of allergen relative to non-encapsulated approaches. Application of 2-3 doses, without the need for dose escalation, was sufficient to achieve prophylactic and therapeutic efficacy, which correlated with suppression of Th2-mediated disease and reduced mast cell degranulation. Efficacy was associated with strong reductions in a broad panel of Th1, Th2, and Th17 cytokines. These results demonstrate the ability of PLG NPs to suppress allergen-specific immune responses to induce a more tolerogenic phenotype, conferring protection from intragastric allergen challenge. These promising studies represent a step forward in the development of improved immunotherapies for food allergy.

12.
Immunotherapy ; 14(7): 539-552, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35196877

RESUMEN

Aim: Epicutaneous immunotherapy (EPIT) with peanut has been demonstrated to be safe but efficacy may be limited by allergen uptake through the skin barrier. To enhance allergen uptake into the skin, the authors used peanut-coated microneedles and compared them with EPIT in a peanut allergy mouse model. Methods: Sensitized mice were treated with peanut-coated microneedles or peanut-EPIT and then challenged with peanut to determine protection. Results: Treatment with peanut-coated microneedles was safe and showed enhanced desensitization to peanut compared with peanut-EPIT administered via a similar schedule. Protection was associated with reduced Th2 immune responses and mast cell accumulation in the intestine. Conclusion: Peanut-coated microneedles have the potential to present a safe method of improving allergen delivery for cutaneous immunotherapy.


Epicutaneous immunotherapy (EPIT) with peanut has been demonstrated to be safe but efficacy has been varied. The tight barrier provided by the skin may limit the amount of allergen taken up through the skin and thus reduce efficacy. The authors evaluated a microneedle-based approach to improve the amount of allergen deposited into the skin to improve efficacy. Mice were made allergic to peanut and then treated with peanut-coated microneedles or peanut-EPIT. Mice were challenged with peanut to determine suppression of allergic reactivity. In mice, treatment with peanut-coated microneedles was safe and enhanced desensitization to peanut compared with peanut-EPIT administered via a similar schedule. Peanut-coated microneedles may present a novel method of improving allergen immunotherapy delivered through the skin.


Asunto(s)
Alérgenos , Hipersensibilidad al Cacahuete , Animales , Arachis , Desensibilización Inmunológica/métodos , Humanos , Ratones , Hipersensibilidad al Cacahuete/terapia , Piel
13.
Adv Pharmacol ; 91: 229-258, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34099110

RESUMEN

Food allergy is a growing public health epidemic with few available treatments beyond allergen avoidance and rescue medications for accidental exposures. A major focus of therapeutic development for food allergies is allergen-specific immunotherapy (AIT) in which patients are exposed to increasing amounts of allergen in controlled dosing to induce desensitization or tolerance. The work of the past few decades has culminated in the recent FDA approval of a peanut product for oral AIT for peanut allergies. Despite these advances, current AIT protocols are cumbersome, take a long time to reach clinical benefit and often have significant side effects. Therefore, there is a great need to develop new therapeutics for food allergy. One area of research aims to improve AIT through the use of adjuvants which are substances traditionally added to vaccines to stimulate or direct a specific immune response. Adjuvants that induce Th1-polarized and regulatory immune responses while suppressing Th2 immunity have shown the most promise in animal models. The addition of adjuvants to AIT may reduce the amount and frequency of allergen required to achieve clinical benefit and may induce more long-lasting immune responses. In this chapter, we highlight examples of adjuvanted AIT and vaccines in development to treat food allergies.


Asunto(s)
Hipersensibilidad a los Alimentos , Vacunas , Adyuvantes Inmunológicos/uso terapéutico , Alérgenos , Animales , Desensibilización Inmunológica , Hipersensibilidad a los Alimentos/terapia , Humanos
14.
Front Immunol ; 12: 599296, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717078

RESUMEN

We have demonstrated that intranasal immunotherapy with allergens formulated in a nanoemulsion (NE) mucosal adjuvant suppresses Th2/IgE-mediated allergic responses and protects from allergen challenge in murine food allergy models. Protection conferred by this therapy is associated with strong suppression of allergen specific Th2 cellular immunity and increased Th1 cytokines. Here we extend these studies to examine the effect of NE-allergen immunization in mice sensitized to multiple foods. Mice were sensitized to both egg and peanut and then received NE vaccine formulated with either one or both of these allergens. The animals were then subjected to oral challenges with either egg or peanut to assess reactivity. Immunization with NE formulations containing both egg and peanut markedly reduced reactivity after oral allergen challenge with either allergen. Interestingly, mice that received the vaccine containing only peanut also had reduced reactivity to challenge with egg. Protection from oral allergen challenge was achieved despite the persistence of allergen-specific IgE and was associated with strong suppression of both Th2-polarized immune responses, alarmins and type 2 innate lymphoid cells (ILC2). NE-induced bystander suppression of reactivity required IFN-γ and the presence of an allergen in the NE vaccine. These results demonstrate that anaphylactic reactions to food allergens can be suppressed using allergen-specific immunotherapy without having to eliminate allergen-specific IgE and suggests that modulation of Th2 immunity towards one allergen may induce bystander effects that suppress reactivity to other allergens through the induction of IFN-γ and suppression of alarmins in the intestine. In addition, these data suggest that a NE vaccine for a single food allergen may lead to a global suppression of allergic responses to multiple foods.


Asunto(s)
Alarminas/genética , Alérgenos/inmunología , Hipersensibilidad a los Alimentos/etiología , Hipersensibilidad a los Alimentos/terapia , Regulación de la Expresión Génica , Vacunas/inmunología , Adyuvantes Inmunológicos , Administración Intranasal , Animales , Efecto Espectador , Citocinas/metabolismo , Desensibilización Inmunológica , Modelos Animales de Enfermedad , Inmunoglobulina E/inmunología , Inmunomodulación , Ratones , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Vacunas/administración & dosificación
15.
Front Immunol ; 12: 729189, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603303

RESUMEN

Several SARS-CoV-2 vaccines have received EUAs, but many issues remain unresolved, including duration of conferred immunity and breadth of cross-protection. Adjuvants that enhance and shape adaptive immune responses that confer broad protection against SARS-CoV-2 variants will be pivotal for long-term protection as drift variants continue to emerge. We developed an intranasal, rationally designed adjuvant integrating a nanoemulsion (NE) that activates TLRs and NLRP3 with an RNA agonist of RIG-I (IVT DI). The combination adjuvant with spike protein antigen elicited robust responses to SARS-CoV-2 in mice, with markedly enhanced TH1-biased cellular responses and high virus-neutralizing antibody titers towards both homologous SARS-CoV-2 and a variant harboring the N501Y mutation shared by B1.1.7, B.1.351 and P.1 variants. Furthermore, passive transfer of vaccination-induced antibodies protected naive mice against heterologous viral challenge. NE/IVT DI enables mucosal vaccination, and has the potential to improve the immune profile of a variety of SARS-CoV-2 vaccine candidates to provide effective cross-protection against future drift variants.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunas Sintéticas/inmunología , Inmunidad Adaptativa/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Chlorocebus aethiops , Protección Cruzada/inmunología , Proteína 58 DEAD Box , Células HEK293 , Humanos , Inmunidad Humoral/inmunología , Inmunización Pasiva , Ratones , Ratones Endogámicos C57BL , Receptores Inmunológicos/agonistas , Proteínas Recombinantes/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Células Vero
16.
bioRxiv ; 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33619480

RESUMEN

Several SARS-CoV-2 vaccines have received EUAs, but many issues remain unresolved, including duration of conferred immunity and breadth of cross-protection. Adjuvants that enhance and shape adaptive immune responses that confer broad protection against SARS-CoV-2 variants will be pivotal for long-term protection. We developed an intranasal, rationally designed adjuvant integrating a nanoemulsion (NE) that activates TLRs and NLRP3 with an RNA agonist of RIG-I (IVT DI). The combination adjuvant with spike protein antigen elicited robust responses to SARS-CoV-2 in mice, with markedly enhanced T H 1-biased cellular responses and high virus-neutralizing antibody titers towards both homologous SARS-CoV-2 and a variant harboring the N501Y mutation shared by B1.1.7, B.1.351 and P.1 variants. Furthermore, passive transfer of vaccination-induced antibodies protected naive mice against heterologous viral challenge. NE/IVT DI enables mucosal vaccination, and has the potential to improve the immune profile of a variety of SARS-CoV-2 vaccine candidates to provide effective cross-protection against future drift variants.

17.
Am J Respir Cell Mol Biol ; 43(4): 498-506, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19933376

RESUMEN

Highly ordered sphingolipid-enriched lipid raft microdomains (LRMs) within plasma membranes purportedly function as specialized signaling platforms. Leukocyte migration is believed to entail LRM redistribution, but progress in studying LRMs in situ during cell movement has been limited. By using an improved method for imaging the spectral shift of the environmentally sensitive probe, laurdan (expressed as a generalized polarization function), the plasma membrane order (i.e., tight packing of membrane bilayer lipids) of human polymorphonuclear neutrophils (PMNs) was mapped in real time during migration. Morphologically polarized PMNs exhibited prominent LRM clusters at the uropod, where in every instance membrane order was found to oscillate with mean periodicities of 37.0 ± 1.46 and 149.9 ± 9.0 seconds (P < 0.01). LRM aggregates were also demonstrated in punctate and clustered distributions of nonpolarized cells and transiently at the lamellipodia of polarized PMNs. Cellular polarization was not accompanied by an overall increase in membrane order. LRM disorganization with methyl-ß-cyclodextrin had small negative effects on cell velocity, but it abrogated directionally biased migration toward chemotactic gradients of FMLP or leukotriene B(4). LRMs disruption also caused redistribution of Rac 1/2 GTPase and GM3 ganglioside away from the lamellipodium, as well as extension of multiple pseudopods simultaneously or in rapid succession, rather than formation of a defined leading edge. Thus, we demonstrate that the plasma membrane order of migrating PMNs changes dynamically, with prominent oscillations consistently seen at the uropod. These findings solidify the existence of rapidly reorganizing LRMs in situ and support a role for LRMs in chemotaxin responsiveness.


Asunto(s)
Quimiotaxis de Leucocito , Lípidos de la Membrana/metabolismo , Neutrófilos/citología , Neutrófilos/metabolismo , 2-Naftilamina/análogos & derivados , 2-Naftilamina/metabolismo , Forma de la Célula/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Quimiotaxis de Leucocito/efectos de los fármacos , Humanos , Lauratos/metabolismo , Leucotrieno B4/farmacología , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , N-Formilmetionina Leucil-Fenilalanina/farmacología , Neutrófilos/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Factores de Tiempo , Proteínas de Unión al GTP rac/metabolismo
18.
Front Immunol ; 10: 916, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31134057

RESUMEN

Mucosal surfaces are the primary point of entry for many infectious agents and mucosal immune responses serve as the primary defense to these pathogens. In order to mount an effective mucosal immune response, it is important to induce T cell homing to mucosal surfaces. Conventional vaccine adjuvants induce strong systemic immunity but often fail to produce mucosal immunity. We have developed an oil-in-water nanoemulsion (NE) adjuvant that provides mucosal immunity and efficient protection against mucosal pathogens when administered as part of an intranasal vaccine. In the present study, we demonstrate that intranasal immunization with NE indirectly activates the retinaldehyde dehydrogenase (RALDH) activity in dendritic cells through epithelial cell activity leading to SIgA as well as potent cellular responses and expression of α4ß7 and CCR9 gut homing receptors on T cells. Confirming these findings, ex-vivo stimulation of splenocytes from NE nasally immunized animals showed increase in Th1/Th17 cytokines while suppressing Th2 responses. In examining mechanisms underlying this activation NE activated RALDH via MyD88 dependent pathways in DCs but did not activate the retinoic acid receptor directly. These results suggest that RALDH immune activities can be achieved by epithelial activation without direct RAR activation, which has significant implications for understanding mucosal immunity and the design of mucosal vaccines.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Células Dendríticas/inmunología , Inmunidad Mucosa/efectos de los fármacos , Factor 88 de Diferenciación Mieloide/inmunología , Nanoestructuras , Retinal-Deshidrogenasa/inmunología , Transducción de Señal/efectos de los fármacos , Administración Intranasal , Animales , Línea Celular , Emulsiones , Activación Enzimática/efectos de los fármacos , Activación Enzimática/inmunología , Ratones , Transducción de Señal/inmunología
19.
AIDS Res Hum Retroviruses ; 24(2): 271-81, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18260780

RESUMEN

Epidemiological and experimental data suggest that both robust neutralizing antibodies and potent cellular responses play important roles in controlling primary HIV-1 infection. In this study we have investigated the induction of systemic and mucosal immune responses to HIV gp120 monomer immunogen administered intranasally in a novel, oil-in-water nanoemulsion (NE) adjuvant. Mice and guinea pigs intranasally immunized by the application of recombinant HIV gp120 antigen mixed in NE demonstrated robust serum anti-gp120 IgG, as well as bronchial, vaginal, and serum anti-gp120 IgA in mice. The serum of these animals demonstrated antibodies that cross-reacted with heterologous serotypes of gp120 and had significant neutralizing activity against two clade-B laboratory strains of HIV (HIVBaL and HIVSF162) and five primary HIV-1 isolates. The analysis of gp120-specific CTL proliferation, INF-gamma induction, and prevalence of anti-gp120 IgG2 subclass antibodies indicated that nasal vaccination in NE also induced systemic, Th1-polarized cellular immune responses. This study suggests that NE should be evaluated as a mucosal adjuvant for multivalent HIV vaccines.


Asunto(s)
Adyuvantes Inmunológicos , Emulsiones/administración & dosificación , Anticuerpos Anti-VIH/sangre , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Linfocitos T Citotóxicos/inmunología , Administración Intranasal , Animales , Proliferación Celular , Reacciones Cruzadas , Femenino , Cobayas , Proteína gp120 de Envoltorio del VIH/administración & dosificación , Inmunoglobulina A/análisis , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Interferón gamma/biosíntesis , Pulmón/química , Pulmón/inmunología , Ratones , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Vagina/química , Vagina/inmunología
20.
Hum Vaccin Immunother ; 11(12): 2904-12, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26307915

RESUMEN

Respiratory Syncytial Virus is a leading cause of bronchiolitis and pneumonia in infants, the elderly and individuals with compromised immune systems. Despite decades of research, there is currently no available vaccine for RSV. Our group has previously demonstrated that intranasal immunization of mice with RSV inactivated by and adjuvanted with W805EC nanoemulsion elicits robust humoral and cellular immune responses, resulting in protection against RSV infection. This protection was achieved without the induction of airway hyper-reactivity or a Th2-skewed immune response. The cotton rat Sigmodon hispidus has been used for years as an excellent small animal model of RSV disease. Thus, we extended these rodent studies to the more permissive cotton rat model. Intranasal immunization of the nanoemulsion-adjuvanted RSV vaccines induced high antibody titers and a robust Th1-skewed cellular response. Importantly, vaccination provided sterilizing cross-protective immunity against a heterologous RSV challenge and did not induce marked or severe histological effects or eosinophilia in the lung after viral challenge. Overall, these data demonstrate that nanoemulsion-formulated whole RSV vaccines are both safe and effective for immunization in multiple animal models.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Emulsiones/uso terapéutico , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/uso terapéutico , Sigmodontinae/inmunología , Vacunas de Productos Inactivados/inmunología , Administración Intranasal , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Bronquiolitis/inmunología , Bronquiolitis/prevención & control , Bronquiolitis/virología , Protección Cruzada/inmunología , Femenino , Pulmón/patología , Pulmón/virología , Neumonía Viral/inmunología , Neumonía Viral/prevención & control , Neumonía Viral/virología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitiales Respiratorios/inmunología , Sigmodontinae/virología , Células TH1/inmunología , Vacunación , Proteínas Virales de Fusión/inmunología , Carga Viral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA