Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Immunol Cell Biol ; 101(2): 156-170, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36510483

RESUMEN

Δ9 -Tetrahydrocannabinol (Δ9 -THC) and cannabidiol (CBD) are cannabinoids found in Cannabis sativa. While research supports cannabinoids reduce inflammation, the consensus surrounding receptor(s)-mediated effects has yet to be established. Here, we investigated the receptor-mediated properties of Δ9 -THC and CBD on alveolar macrophages, an important pulmonary immune cell in direct contact with cannabinoids inhaled by cannabis smokers. MH-S cells, a mouse alveolar macrophage cell line, were exposed to Δ9 -THC and CBD, with and without lipopolysaccharide (LPS). Outcomes included RNA-sequencing and cytokine analysis. Δ9 -THC and CBD alone did not affect the basal transcriptional response of MH-S cells. In response to LPS, Δ9 -THC and CBD significantly reduced the expression of numerous proinflammatory cytokines including tumor necrosis factor-alpha, interleukin (IL)-1ß and IL-6, an effect that was dependent on CB2 . The anti-inflammatory effects of CBD but not Δ9 -THC were mediated through a reduction in signaling through nuclear factor-kappa B and extracellular signal-regulated protein kinase 1/2. These results suggest that CBD and Δ9 -THC have potent immunomodulatory properties in alveolar macrophages, a cell type important in immune homeostasis in the lungs. Further investigation into the effects of cannabinoids on lung immune cells could lead to the identification of therapies that may ameliorate conditions characterized by inflammation.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Ratones , Animales , Cannabidiol/farmacología , Dronabinol/farmacología , Macrófagos Alveolares/metabolismo , Lipopolisacáridos/farmacología , Cannabis/metabolismo , Citocinas/metabolismo , Inflamación/metabolismo
2.
Nat Commun ; 13(1): 879, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35169163

RESUMEN

Dysregulation of the balance between pro-inflammatory and anti-inflammatory macrophages has a key function in the pathogenesis of Duchenne muscular dystrophy (DMD), a fatal genetic disease. We postulate that an evolutionarily ancient protective mechanism against infection, known as trained immunity, drives pathological inflammation in DMD. Here we show that bone marrow-derived macrophages from a murine model of DMD (mdx) exhibit cardinal features of trained immunity, consisting of transcriptional hyperresponsiveness associated with metabolic and epigenetic remodeling. The hyperresponsive phenotype is transmissible by bone marrow transplantation to previously healthy mice and persists for up to 11 weeks post-transplant. Mechanistically, training is induced by muscle extract in vitro. The functional and epigenetic changes in bone marrow-derived macrophages from dystrophic mice are TLR4-dependent. Adoptive transfer experiments further support the TLR4-dependence of trained macrophages homing to damaged muscles from the bone marrow. Collectively, this suggests that a TLR4-regulated, memory-like capacity of innate immunity induced at the level of the bone marrow promotes dysregulated inflammation in DMD.


Asunto(s)
Trasplante de Médula Ósea , Inmunidad Innata/inmunología , Macrófagos/inmunología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Receptor Toll-Like 4/inmunología , Animales , Células de la Médula Ósea/inmunología , Línea Celular , Modelos Animales de Enfermedad , Inflamación/inmunología , Células L , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Músculo Esquelético/inmunología , Distrofia Muscular de Duchenne/inmunología , Extractos de Tejidos/farmacología , Transcripción Genética/genética
3.
Cell Rep ; 31(5): 107585, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32375032

RESUMEN

Dendritic cells, cells of the innate immune system, are found in a steady state poised to respond to activating stimuli. Once stimulated, they rapidly undergo dynamic changes in gene expression to adopt an activated phenotype capable of stimulating immune responses. We find that the microRNA miR-9 is upregulated in both bone marrow-derived DCs and conventional DC1s but not in conventional DC2s following stimulation. miR-9 expression in BMDCs and conventional DC1s promotes enhanced DC activation and function, including the ability to stimulate T cell activation and control tumor growth. We find that miR-9 regulated the expression of several negative regulators of transcription, including the transcriptional repressor Polycomb group factor 6 (Pcgf6). These findings demonstrate that miR-9 facilitates the transition of DCs from steady state to mature state by regulating the expression of several negative regulators of DC function in a cell-type-specific manner.


Asunto(s)
Diferenciación Celular/genética , Células Dendríticas/metabolismo , Activación de Linfocitos/genética , MicroARNs/genética , Diferenciación Celular/inmunología , Células Dendríticas/inmunología , Humanos , MicroARNs/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba
4.
PLoS One ; 12(6): e0179967, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28654702

RESUMEN

Mitochondria translate the RNAs for 13 core polypeptides of respiratory chain and ATP synthase complexes that are essential for the assembly and function of these complexes. This process occurs in close proximity to the mitochondrial inner membrane. However, the mechanisms and molecular machinery involved in mitochondrial translation are not fully understood, and defects in this process can result in severe diseases. Stomatin-like protein (SLP)-2 is a mainly mitochondrial protein that forms cardiolipin- and prohibitin-enriched microdomains in the mitochondrial inner membrane that are important for the formation of respiratory supercomplexes and their function. Given this regulatory role of SLP-2 in processes closely associated with the mitochondrial inner membrane, we hypothesized that the function of SLP-2 would have an impact on mitochondrial translation. 35S-Methionine/cysteine pulse labeling of resting or activated T cells from T cell-specific Slp-2 knockout mice showed a significant impairment in the production of several mitochondrial DNA-encoded polypeptides following T cell activation, including Cytb, COXI, COXII, COXIII, and ATP6. Measurement of mitochondrial DNA stability and mitochondrial transcription revealed that this impairment was at the post-transcriptional level. Examination of mitochondrial ribosome assembly showed that SLP-2 migrated in sucrose-density gradients similarly to the large ribosomal subunit but that its deletion at the genetic level did not affect mitochondrial ribosome assembly. Functionally, the impairment in mitochondrial translation correlated with decreased interleukin-2 production in activated T cells. Altogether, these data show that SLP-2 acts as a general regulator of mitochondrial translation.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Biosíntesis de Proteínas , Linfocitos T/metabolismo , Animales , Activación de Linfocitos , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas del Tejido Nervioso/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA