Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(42): 11235-11240, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28973941

RESUMEN

Pain is a main symptom of inflammatory diseases and often persists beyond clinical remission. Although we have a good understanding of the mechanisms of sensitization at the periphery during inflammation, little is known about the mediators that drive central sensitization. Recent reports have identified hematopoietic colony-stimulating factors as important regulators of tumor- and nerve injury-associated pain. Using a mouse model of colitis, we identify the proinflammatory cytokine granulocyte-colony-stimulating factor (G-CSF or Csf-3) as a key mediator of visceral sensitization. We report that G-CSF is specifically up-regulated in the thoracolumbar spinal cord of colitis-affected mice. Our results show that resident spinal microglia express the G-CSF receptor and that G-CSF signaling mediates microglial activation following colitis. Furthermore, healthy mice subjected to intrathecal injection of G-CSF exhibit pronounced visceral hypersensitivity, an effect that is abolished by microglial depletion. Mechanistically, we demonstrate that G-CSF injection increases Cathepsin S activity in spinal cord tissues. When cocultured with microglia BV-2 cells exposed to G-CSF, dorsal root ganglion (DRG) nociceptors become hyperexcitable. Blocking CX3CR1 or nitric oxide production during G-CSF treatment reduces excitability and G-CSF-induced visceral pain in vivo. Finally, administration of G-CSF-neutralizing antibody can prevent the establishment of persistent visceral pain postcolitis. Overall, our work uncovers a DRG neuron-microglia interaction that responds to G-CSF by engaging Cathepsin S-CX3CR1-inducible NOS signaling. This interaction represents a central step in visceral sensitization following colonic inflammation, thereby identifying spinal G-CSF as a target for treating chronic abdominal pain.


Asunto(s)
Colitis/metabolismo , Factor Estimulante de Colonias de Granulocitos/metabolismo , Microglía/metabolismo , Médula Espinal/metabolismo , Dolor Visceral/etiología , Animales , Receptor 1 de Quimiocinas CX3C/metabolismo , Catepsinas/metabolismo , Línea Celular , Colitis/inducido químicamente , Sulfato de Dextran , Ganglios Espinales/metabolismo , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocito/antagonistas & inhibidores , Dolor Visceral/metabolismo
2.
Am J Physiol Gastrointest Liver Physiol ; 310(8): G574-85, 2016 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-26744469

RESUMEN

Irritable bowel syndrome (IBS) is the most frequent functional gastrointestinal disorder. It is characterized by abdominal hypersensitivity, leading to discomfort and pain, as well as altered bowel habits. While it is common for IBS to develop following the resolution of infectious gastroenteritis [then termed postinfectious IBS (PI-IBS)], the mechanisms remain incompletely understood. Giardia duodenalis is a cosmopolitan water-borne enteropathogen that causes intestinal malabsorption, diarrhea, and postinfectious complications. Cause-and-effect studies using a human enteropathogen to help investigate the mechanisms of PI-IBS are sorely lacking. In an attempt to establish causality between giardiasis and postinfectious visceral hypersensitivity, this study describes a new model of PI-IBS in neonatal rats infected with G. duodenalis At 50 days postinfection with G. duodenalis (assemblage A or B), long after the parasite was cleared, rats developed visceral hypersensitivity to luminal balloon distension in the jejunum and rectum, activation of the nociceptive signaling pathway (increased c-fos expression), histological modifications (villus atrophy and crypt hyperplasia), and proliferation of mucosal intraepithelial lymphocytes and mast cells in the jejunum, but not in the rectum. G. duodenalis infection also disrupted the intestinal barrier, in vivo and in vitro, which in turn promoted the translocation of commensal bacteria. Giardia-induced bacterial paracellular translocation in vitro correlated with degradation of the tight junction proteins occludin and claudin-4. The extensive observations associated with gut hypersensitivity described here demonstrate that, indeed, in this new model of postgiardiasis IBS, alterations to the gut mucosa and c-fos are consistent with those associated with PI-IBS and, hence, offer avenues for new mechanistic research in the field.


Asunto(s)
Microbioma Gastrointestinal , Giardiasis/complicaciones , Síndrome del Colon Irritable/etiología , Migración Transcelular de la Célula , Animales , Células CACO-2 , Escherichia coli/patogenicidad , Escherichia coli/fisiología , Femenino , Giardiasis/microbiología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Síndrome del Colon Irritable/microbiología , Síndrome del Colon Irritable/parasitología , Masculino , Nocicepción , Ratas , Ratas Sprague-Dawley , Proteínas de Uniones Estrechas/metabolismo
3.
Proc Natl Acad Sci U S A ; 110(18): 7476-81, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23596210

RESUMEN

Transient Receptor Potential Melastatin-8 (TRPM8), a recently identified member of the transient receptor potential (TRP) family of ion channels, is activated by mild cooling and by chemical compounds such as the supercooling agent, icilin. Since cooling, possibly involving TRPM8 stimulation, diminishes injury-induced peripheral inflammation, we hypothesized that TRPM8 activation may also attenuate systemic inflammation. We thus studied the involvement of TRPM8 in regulating colonic inflammation using two mouse models of chemically induced colitis. TRPM8 expression, localized immunohistochemically in transgenic TRPM8(GFP) mouse colon, was up-regulated in both human- and murine-inflamed colon samples, as measured by real-time PCR. Wild-type mice (but not TRPM8-nulls) treated systemically with the TRPM8 agonist, icilin showed an attenuation of chemically induced colitis, as reflected by a decrease in macroscopic and microscopic damage scores, bowel thickness, and myeloperoxidase activity compared with untreated animals. Furthermore, icilin treatment reduced the 2,4,6-trinitrobenzenesulfonic acid-induced increase in levels of inflammatory cytokines and chemokines in the colon. In comparison with wild-type mice, Dextran Sodium Sulfate (DSS)-treated TRPM8 knockout mice showed elevated colonic levels of the inflammatory neuropeptide calcitonin-gene-related peptide, although inflammatory indices were equivalent for both groups. Further, TRPM8 activation by icilin blocked capsaicin-triggered calcitonin-gene-related peptide release from colon tissue ex vivo and blocked capsaicin-triggered calcium signaling in Transient Receptor Potential Vaniloid-1 (TRPV1) and TRPM8 transfected HEK cells. Our data document an anti-inflammatory role for TRPM8 activation, in part due to an inhibiton of neuropeptide release, pointing to a novel therapeutic target for colitis and other inflammatory diseases.


Asunto(s)
Colitis/patología , Colitis/fisiopatología , Inflamación/patología , Inflamación/fisiopatología , Activación del Canal Iónico , Canales Catiónicos TRPM/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Señalización del Calcio , Quimiocinas/metabolismo , Colitis/complicaciones , Colitis/tratamiento farmacológico , Colon/metabolismo , Colon/patología , Sulfato de Dextran , Modelos Animales de Enfermedad , Humanos , Inflamación/complicaciones , Mediadores de Inflamación/metabolismo , Ratones , Ratones Noqueados , Pirimidinonas/farmacología , Pirimidinonas/uso terapéutico , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPV/metabolismo , Ácido Trinitrobencenosulfónico
4.
Am J Physiol Gastrointest Liver Physiol ; 309(2): G87-99, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26021808

RESUMEN

Quiescent phases of inflammatory bowel disease (IBD) are often accompanied by chronic abdominal pain. Although the transient receptor potential vanilloid 1 (TRPV1) ion channel has been postulated as an important mediator of visceral hypersensitivity, its functional role in postinflammatory pain remains elusive. This study aimed at establishing the role of TRPV1 in the peripheral sensitization underlying chronic visceral pain in the context of colitis. Wild-type and TRPV1-deficient mice were separated into three groups (control, acute colitis, and recovery), and experimental colitis was induced by oral administration of dextran sulfate sodium (DSS). Recovery mice showed increased chemically and mechanically evoked visceral hypersensitivity 5 wk post-DSS discontinuation, at which point inflammation had completely resolved. Significant changes in nonevoked pain-related behaviors could also be observed in these animals, indicative of persistent discomfort. These behavioral changes correlated with elevated colonic levels of substance P (SP) and TRPV1 in recovery mice, thus leading to the hypothesis that SP could sensitize TRPV1 function. In vitro experiments revealed that prolonged exposure to SP could indeed sensitize capsaicin-evoked currents in both cultured neurons and TRPV1-transfected human embryonic kidney (HEK) cells, a mechanism that involved TRPV1 ubiquitination and subsequent accumulation at the plasma membrane. Importantly, although TRPV1-deficient animals experienced similar disease severity and pain as wild-type mice in the acute phase of colitis, TRPV1 deletion prevented the development of postinflammatory visceral hypersensitivity and pain-associated behaviors. Collectively, our results suggest that chronic exposure of colon-innervating primary afferents to SP could sensitize TRPV1 and thus participate in the establishment of persistent abdominal pain following acute inflammation.


Asunto(s)
Dolor Abdominal/metabolismo , Colitis/metabolismo , Colon/inervación , Hiperalgesia/metabolismo , Umbral del Dolor , Canales Catiónicos TRPV/metabolismo , Dolor Visceral/metabolismo , Dolor Abdominal/inducido químicamente , Dolor Abdominal/genética , Dolor Abdominal/fisiopatología , Enfermedad Aguda , Animales , Conducta Animal , Colitis/inducido químicamente , Colitis/genética , Colitis/fisiopatología , Sulfato de Dextran , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Células HEK293 , Humanos , Hiperalgesia/inducido químicamente , Hiperalgesia/genética , Hiperalgesia/fisiopatología , Hiperalgesia/prevención & control , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Aferentes/metabolismo , Dimensión del Dolor , Transducción de Señal , Sustancia P/metabolismo , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética , Factores de Tiempo , Transfección , Dolor Visceral/inducido químicamente , Dolor Visceral/genética , Dolor Visceral/fisiopatología
5.
Cell Tissue Res ; 356(2): 309-17, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24715114

RESUMEN

Sensitization of dorsal root ganglia (DRG) neurons is an important mechanism underlying the expression of chronic abdominal pain caused by intestinal inflammation. Most studies have focused on changes in the peripheral terminals of DRG neurons in the inflamed intestine but recent evidence suggests that the sprouting of central nerve terminals in the dorsal horn is also important. Therefore, we examine the time course and reversibility of changes in the distribution of immunoreactivity for substance P (SP), a marker of the central terminals of DRG neurons, in the spinal cord during and following dextran sulphate sodium (DSS)-induced colitis in mice. Acute and chronic treatment with DSS significantly increased SP immunoreactivity in thoracic and lumbosacral spinal cord segments. This increase developed over several weeks and was evident in both the superficial laminae of the dorsal horn and in lamina X. These increases persisted for 5 weeks following cessation of both the acute and chronic models. The increase in SP immunoreactivity was not observed in segments of the cervical spinal cord, which were not innervated by the axons of colonic afferent neurons. DRG neurons dissociated following acute DSS-colitis exhibited increased neurite sprouting compared with neurons dissociated from control mice. These data suggest significant colitis-induced enhancements in neuropeptide expression in DRG neuron central terminals. Such neurotransmitter plasticity persists beyond the period of active inflammation and might contribute to a sustained increase in nociceptive signaling following the resolution of inflammation.


Asunto(s)
Colitis/patología , Ganglios Espinales/patología , Intestinos/patología , Plasticidad Neuronal , Células del Asta Posterior/inmunología , Animales , Colitis/inducido químicamente , Sulfato de Dextran , Inflamación/inmunología , Inflamación/patología , Intestinos/inmunología , Región Lumbosacra/inervación , Masculino , Ratones , Dolor , Células del Asta Posterior/patología , Sustancia P/inmunología
6.
Am J Physiol Gastrointest Liver Physiol ; 302(3): G343-51, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22135309

RESUMEN

Compromised epithelial barrier function and tight junction alterations are hallmarks of a number of gastrointestinal disorders, including inflammatory bowel disease (IBD). Increased levels of IL-18 have been observed in mucosal samples from Crohn's disease and ulcerative colitis patients. Remarkably, several reports have demonstrated that immunological or genetic blockage of IL-18 ameliorates the severity of colitis in multiple in vivo models of IBD. Nevertheless, the effects of IL-18 on intestinal epithelial barrier function remain unclear. We hypothesized that IL-18 could disrupt intestinal epithelial barrier structure and function, thus contributing to tissue damage in the context of IBD. The aims of the present study were to determine the effects of IL-18 on epithelial barrier structure and function and to characterize the mechanisms involved in these modulatory properties. Human colonic epithelial Caco-2 monolayers were coincubated with IL-18 for 24 h and processed for immunocytochemistry, immunoblotting, quantitative PCR, and permeability measurements (transepithelial resistance, FITC-dextran fluxes, and bacterial translocation). Our findings indicate that IL-18 selectively disrupts tight junctional occludin, without affecting the distribution pattern of claudin-4, claudin-5, zonula occludens-1, or E-cadherin. This effect coincided with a significant increase in myosin light chain kinase (MLCK) protein levels and activity. Pharmacological inhibition of MLCK and NF-κB prevented IL-18-induced loss of occludin. Although too subtle to alter paracellular permeability, these fine changes correlated with an MLCK-dependent increase in neutrophil transepithelial migration. In conclusion, our data suggest that IL-18 may potentiate inflammation in the context of IBD by facilitating neutrophil transepithelial migration via MLCK-dependent disruption of tight junctional occludin.


Asunto(s)
Interleucina-18/farmacología , Mucosa Intestinal/metabolismo , Proteínas de la Membrana/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Neutrófilos/citología , Migración Transendotelial y Transepitelial/fisiología , Azepinas/farmacología , Células CACO-2 , Cadherinas/metabolismo , Miosinas Cardíacas/metabolismo , Claudina-4 , Claudina-5 , Claudinas/metabolismo , Dextranos/metabolismo , Impedancia Eléctrica , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Escherichia coli/citología , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Humanos , Mucosa Intestinal/citología , Proteínas de la Membrana/genética , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/antagonistas & inhibidores , N-Formilmetionina Leucil-Fenilalanina/farmacología , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Neutrófilos/efectos de los fármacos , Nitrilos/farmacología , Ocludina , Permeabilidad/efectos de los fármacos , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Sulfonas/farmacología , Migración Transendotelial y Transepitelial/efectos de los fármacos , Proteína de la Zonula Occludens-1
7.
Infect Immun ; 79(10): 3887-94, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21825064

RESUMEN

Helicobacter pylori is a risk factor for the development of gastritis, gastroduodenal ulcers, and gastric adenocarcinoma. H. pylori-induced disruption of epithelial adherens junctions (AJs) is thought to promote the development of severe disease; however, the mechanisms whereby H. pylori alters AJ structure remain incompletely understood. The present study demonstrates that H. pylori infection in human patients is associated with elevated serum levels of an 80-kDa E-cadherin ectodomain, whose presence is independent of the presence of serum antibodies against CagA. In vitro, a heat-labile H. pylori surface component activates the host protease calpain in human gastric MKN45 cells independently of the virulence factors CagA and VacA. H. pylori-induced calpain activation results in cleavage of E-cadherin to produce a 100-kDa truncated form and induce relocalization of E-cadherin and ß-catenin. Stimulation of MKN45 cells with the toll-like receptor 2 (TLR2) ligand P3C activated calpain and disrupted E-cadherin and ß-catenin in a pattern similar to that induced by H. pylori. Inhibition of TLR2 prevented H. pylori-induced calpain activation and AJ disassembly. Together, these findings identify a novel pathway whereby H. pylori activates calpain via TLR2 to disrupt gastric epithelial AJ structure.


Asunto(s)
Uniones Adherentes/patología , Calpaína/metabolismo , Mucosa Gástrica/microbiología , Helicobacter pylori/patogenicidad , Interacciones Huésped-Patógeno , Receptor Toll-Like 2/metabolismo , Cadherinas/sangre , Cadherinas/metabolismo , Línea Celular , Línea Celular Tumoral , Activación Enzimática , Células Epiteliales/microbiología , Células Epiteliales/patología , Mucosa Gástrica/citología , Mucosa Gástrica/patología , Infecciones por Helicobacter/sangre , Infecciones por Helicobacter/microbiología , Helicobacter pylori/metabolismo , Humanos , beta Catenina/sangre , beta Catenina/metabolismo
8.
Cell Microbiol ; 12(5): 692-703, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20070312

RESUMEN

Helicobacter pylori infects more than half of the human population worldwide. In the absence of treatment, this persistent infection leads to asymptomatic gastritis, which in some cases can progress into gastric ulcers and adenocarcinomas. The host-microbial interactions that govern the clinical outcome of infection remain incompletely understood. H. pylori is known to disrupt gastric epithelial tight junctions, which may represent a significant component of disease pathogenesis. The present study demonstrates that H. pylori disrupt epithelial tight junctional claudin-4 in a Rho kinase (ROCK)-dependent manner in human gastric epithelial (HGE-20) cell monolayers, independently of the virulence factors CagA and VacA, and without altering claudin-4 transcription. In the same epithelial cell model, interleukin (IL)-1beta, mediated a similar ROCK-dependent pattern of tight junction disruption. Further experiments revealed that H. pylori infection induced IL-1 receptor type I (IL-1RI) phosphorylation, independently of epithelial secretion of its endogenous ligands IL-1alpha, IL-1beta or IL-18. Finally, inhibition of IL-1RI activation prevented H. pylori-induced ROCK activation and claudin-4 disruption. Taken together, these findings identify a novel pathophysiological mechanism by which H. pylori disrupts gastric epithelial barrier structure via IL-1RI-dependent activation of ROCK, which in turn mediates tight junctional claudin-4 disruption.


Asunto(s)
Células Epiteliales/microbiología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/patogenicidad , Proteínas de la Membrana/antagonistas & inhibidores , Receptores de Interleucina-1/metabolismo , Quinasas Asociadas a rho/metabolismo , Antígenos Bacterianos/fisiología , Proteínas Bacterianas/fisiología , Línea Celular , Claudina-4 , Humanos , Interleucina-1beta/metabolismo , Fosforilación , Factores de Virulencia/fisiología
9.
Lab Invest ; 89(9): 964-70, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19620958

RESUMEN

The homeostatic balance of the gastrointestinal tract relies on a single layer of epithelial cells, which assumes both digestive and protective functions. Enteric pathogens, including enteropathogenic Escherichia coli (EPEC), have evolved numerous mechanisms to disrupt basic intestinal epithelial functions, promoting the development of gastrointestinal disorders. Despite its non-invasive nature, EPEC inflicts severe damage to the intestinal mucosa, including the dysregulation of water and solute transport and the disruption of epithelial barrier structure and function. Despite the high prevalence and morbidity of disease caused by EPEC infections, the etiology of its pathogenesis remains incompletely understood. This review integrates the newest findings on EPEC-epithelial interactions with established mechanisms of disease in an attempt to give a comprehensive understanding of the cellular processes whereby this common pathogen may cause diarrheal illness.


Asunto(s)
Diarrea/microbiología , Infecciones por Escherichia coli/microbiología , Escherichia coli/fisiología , Interacciones Huésped-Patógeno/fisiología , Mucosa Intestinal/microbiología , Animales , Diarrea/fisiopatología , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/fisiopatología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiopatología , Transporte Iónico/fisiología , Simportadores/fisiología , Virulencia , Agua/metabolismo
10.
Channels (Austin) ; 5(6): 525-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21993194

RESUMEN

Despite significant progress in our understanding of the cellular and molecular mechanisms underlying sensory transduction and nociception, clinical pain management remains a considerable challenge in health care and basic research. The identification of the superfamily of transient receptor potential (TRP) cation channels, particularly TRPV1 and TRPA1, has shed light on the molecular basis of pain signaling during inflammatory conditions. TRPV1 and TRPA1 are considered as potential targets in the treatment of inflammatory pain because of their ability to be activated by nociceptive signals and sensitized by pro-inflammatory mediators. Notably, TRPA1 is expressed in visceral afferent neurons and is known to participate in inflammatory responses and the establishment of hypersensitivity. This review summarizes the current knowledge of the role of TRPA1 in sensory transduction, particularly in the context of visceral inflammation and pain in the gastrointestinal and urinary tracts.


Asunto(s)
Canales de Calcio/metabolismo , Tracto Gastrointestinal/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nocicepción , Canales de Potencial de Receptor Transitorio/metabolismo , Sistema Urinario/metabolismo , Dolor Visceral/metabolismo , Animales , Tracto Gastrointestinal/fisiopatología , Humanos , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Canal Catiónico TRPA1 , Canales Catiónicos TRPV/metabolismo , Sistema Urinario/fisiopatología
11.
Inflamm Bowel Dis ; 16(8): 1411-20, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20155848

RESUMEN

Patients with ulcerative colitis and Crohn's disease are at increased risk of developing intestinal cancers via mechanisms that remain incompletely understood. However, chronic inflammation and repeated events of inflammatory relapse in inflammatory bowel disease (IBD) expose these patients to a number of signals known to have tumorigenic effects including persistent activation of the nuclear factor-kappaB and cyclooxygenase-2/prostaglandin pathways, release of proinflammatory mediators such as tumor necrosis factor-alpha and interleukin-6, and enhanced local levels of reactive oxygen and nitrogen species. These inflammatory signals can contribute to carcinogenesis via 3 major processes: 1) by increasing oxidative stress, which promotes DNA mutagenesis thus contributing to tumor initiation; 2) by activating prosurvival and antiapoptotic pathways in epithelial cells, thereby contributing to tumor promotion; and 3) by creating an environment that supports sustained growth, angiogenesis, migration, and invasion of tumor cells, thus supporting tumor progression and metastasis. The present review integrates clinical and basic research observations in an attempt to provide a comprehensive understanding of how inflammatory processes may contribute to intestinal cancer development in IBD patients.


Asunto(s)
Mediadores de Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/complicaciones , Neoplasias Intestinales/etiología , Animales , Humanos , Enfermedades Inflamatorias del Intestino/inmunología , Neoplasias Intestinales/inmunología , Ratones , Mutación , Estrés Oxidativo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Riesgo
12.
Infect Immun ; 73(12): 7844-52, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16299274

RESUMEN

Helicobacter pylori is a spiral, gram-negative bacterium that specifically and persistently infects the human stomach. In some individuals, H. pylori-induced chronic gastritis may progress to gastroduodenal ulcers and gastric cancer. Currently, the host-microbe interactions that determine the clinical outcome of infection are not well defined. H. pylori strains capable of disrupting the gastric epithelial barrier may increase the likelihood of developing serious disease. In this study, H. pylori strain SS1 increased gastric, but not small intestinal, permeability in C57BL/6 mice. H. pylori strain SS1 was able to directly increase paracellular permeability, in the absence of host inflammatory cells, by disrupting the tight-junctional proteins occludin, claudin-4, and claudin-5 in confluent nontransformed epithelial cells. H. pylori SS1 also reduced claudin-4 protein levels in human gastric AGS cells. The ability of H. pylori SS1 to increase permeability appeared to be independent of the well-characterized virulence factors vacuolating cytotoxin and CagA protein. H. pylori activated myosin light-chain kinase in epithelial cells to phosphorylate myosin light chain and increase permeability by disrupting claudin-4 and claudin-5. The bacterial factor responsible for increasing epithelial permeability was heat sensitive, membrane bound, and required apical contact with monolayers. In conclusion, disruptions of the tight junctions observed in this study implicate host cell signaling pathways, including the phosphorylation of myosin light chain and the regulation of tight-junctional proteins claudin-4 and claudin-5, in the pathogenesis of H. pylori infection.


Asunto(s)
Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/microbiología , Helicobacter pylori/patogenicidad , Proteínas de la Membrana/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Uniones Estrechas/metabolismo , Animales , Claudina-4 , Claudina-5 , Activación Enzimática , Femenino , Mucosa Gástrica/química , Mucosa Gástrica/microbiología , Gastritis/microbiología , Gastritis/patología , Infecciones por Helicobacter/enzimología , Infecciones por Helicobacter/metabolismo , Proteínas de la Membrana/análisis , Ratones , Ratones Endogámicos C57BL , Permeabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA