Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(3): 873-880, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38207217

RESUMEN

Nitrogen-vacancy (NV) magnetometry offers an alternative tool to detect paramagnetic centers in cells with a favorable combination of magnetic sensitivity and spatial resolution. Here, we employ NV magnetic relaxometry to detect cytochrome C (Cyt-C) nanoclusters. Cyt-C is a water-soluble protein that plays a vital role in the electron transport chain of mitochondria. Under ambient conditions, the heme group in Cyt-C remains in the Fe3+ state, which is paramagnetic. We vary the concentration of Cyt-C from 6 to 54 µM and observe a reduction of the NV spin-lattice relaxation time (T1) from 1.2 ms to 150 µs, which is attributed to the spin noise originating from the Fe3+ spins. NV T1 imaging of Cyt-C drop-casted on a nanostructured diamond chip allows us to detect the relaxation rates from the adsorbed Fe3+ within Cyt-C.


Asunto(s)
Citocromos c , Nitrógeno , Magnetismo , Diamante , Fenómenos Magnéticos
2.
Nano Lett ; 14(1): 32-6, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24199716

RESUMEN

The combination of long spin coherence time and nanoscale size has made nitrogen vacancy (NV) centers in nanodiamonds the subject of much interest for quantum information and sensing applications. However, currently available high-pressure high-temperature (HPHT) nanodiamonds have a high concentration of paramagnetic impurities that limit their spin coherence time to the order of microseconds, less than 1% of that observed in bulk diamond. In this work, we use a porous metal mask and a reactive ion etching process to fabricate nanocrystals from high-purity chemical vapor deposition (CVD) diamond. We show that NV centers in these CVD nanodiamonds exhibit record-long spin coherence times in excess of 200 µs, enabling magnetic field sensitivities of 290 nT Hz(-1/2) with the spatial resolution characteristic of a 50 nm diameter probe.

3.
Nano Lett ; 12(7): 3477-82, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22725686

RESUMEN

Semiconductor nanoparticles host a number of paramagnetic point defects and impurities, many of them adjacent to the surface, whose response to external stimuli could help probe the complex dynamics of the particle and its local, nanoscale environment. Here, we use optically detected magnetic resonance in a nitrogen-vacancy (NV) center within an individual diamond nanocrystal to investigate the composition and spin dynamics of the particle-hosted spin bath. For the present sample, a ∼45 nm diamond crystal, NV-assisted dark-spin spectroscopy reveals the presence of nitrogen donors and a second, yet-unidentified class of paramagnetic centers. Both groups share a common spin lifetime considerably shorter than that observed for the NV spin, suggesting some form of spatial clustering, possibly on the nanoparticle surface. Using double spin resonance and dynamical decoupling, we also demonstrate control of the combined NV center-spin bath dynamics and attain NV coherence lifetimes comparable to those reported for bulk, Type Ib samples. Extensions based on the experiments presented herein hold promise for applications in nanoscale magnetic sensing, biomedical labeling, and imaging.


Asunto(s)
Diamante , Magnetometría , Imanes , Nanopartículas/química , Nitrógeno/química , Espectroscopía de Resonancia Magnética , Microscopía de Fuerza Atómica , Microscopía Confocal , Tamaño de la Partícula , Semiconductores , Propiedades de Superficie
5.
ACS Nano ; 17(9): 8694-8704, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37093121

RESUMEN

[Fe(Htrz)2(trz)](BF4) (Fe-triazole) spin crossover molecules show thermal, electrical, and optical switching between high spin (HS) and low spin (LS) states, making them promising candidates for molecular spintronics. The LS and HS transitions originate from the electronic configurations of Fe(II) and are considered to be diamagnetic and paramagnetic, respectively. The Fe(II) LS state has six paired electrons in the ground states with no interaction with the magnetic field and a diamagnetic behavior is usually observed. While the bulk magnetic properties of Fe-triazole compounds are widely studied by standard magnetometry techniques, their magnetic properties at the individual level are missing. Here we use nitrogen vacancy (NV) based magnetometry to study the magnetic properties of the Fe-triazole LS state of nanoparticle clusters and individual nanorods of size varying from 20 to 1000 nm. Scanning electron microscopy (SEM) and Raman spectroscopy are performed to determine the size of the nanoparticles/nanorods and to confirm their respective spin states. The magnetic field patterns produced by the nanoparticles/nanorods are imaged by NV magnetic microscopy as a function of applied magnetic field (up to 350 mT) and correlated with SEM and Raman. We found that in most of the nanorods the LS state is slightly paramagnetic, possibly originating from the surface oxidation and/or the greater Fe(III) presence along the nanorods' edges. NV measurements on the Fe-triazole LS state nanoparticle clusters revealed both diamagnetic and paramagnetic behavior. Our results highlight the potential of NV quantum sensors to study the magnetic properties of spin crossover molecules and molecular magnets.

6.
RSC Adv ; 13(1): 178-185, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36605625

RESUMEN

We report direct imaging of boundary magnetization associated with antiferromagnetic domains in magnetoelectric epitaxial Cr2O3 thin films using diamond nitrogen vacancy microscopy. We found a correlation between magnetic domain size and structural grain size which we associate with the domain formation process. We performed field cooling, i.e., cooling from above to below the Néel temperature in the presence of a magnetic field, which resulted in the selection of one of the two otherwise degenerate 180° domains. Lifting of such a degeneracy is achievable with a magnetic field alone due to the Zeeman energy of a weak parasitic magnetic moment in Cr2O3 films that originates from defects and the imbalance of the boundary magnetization of opposing interfaces. This boundary magnetization couples to the antiferromagnetic order parameter enabling selection of its orientation. Nanostructuring the Cr2O3 film with mesa structures revealed reversible edge magnetic states with the direction of magnetic field during field cooling.

7.
Phys Rev Appl ; 11(3)2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31245433

RESUMEN

Magnetic microscopy of malarial hemozoin nanocrystals is performed by optically detected magnetic resonance imaging of near-surface diamond nitrogen-vacancy centers. Hemozoin crystals are extracted from Plasmodium falciparum-infected human blood cells and studied alongside synthetic hemozoin crystals. The stray magnetic fields produced by individual crystals are imaged at room temperature as a function of the applied field up to 350 mT. More than 100 nanocrystals are analyzed, revealing the distribution of their magnetic properties. Most crystals (96%) exhibit a linear dependence of the stray-field magnitude on the applied field, confirming hemozoin's paramagnetic nature. A volume magnetic susceptibility of 3.4 × 10-4 is inferred with use of a magnetostatic model informed by correlated scanning-electron-microscopy measurements of crystal dimensions. A small fraction of nanoparticles (4/82 for Plasmodium falciparum-produced nanoparticles and 1/41 for synthetic nanoparticles) exhibit a saturation behavior consistent with superparamagnetism. Translation of this platform to the study of living Plasmodium-infected cells may shed new light on hemozoin formation dynamics and their interaction with antimalarial drugs.

8.
Sci Adv ; 5(7): eaaw7895, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31360769

RESUMEN

Quantum sensors based on nitrogen-vacancy centers in diamond have emerged as a promising detection modality for nuclear magnetic resonance (NMR) spectroscopy owing to their micrometer-scale detection volume and noninductive-based detection. A remaining challenge is to realize sufficiently high spectral resolution and concentration sensitivity for multidimensional NMR analysis of picoliter sample volumes. Here, we address this challenge by spatially separating the polarization and detection phases of the experiment in a microfluidic platform. We realize a spectral resolution of 0.65 ± 0.05 Hz, an order-of-magnitude improvement over previous diamond NMR studies. We use the platform to perform two-dimensional correlation spectroscopy of liquid analytes within an effective ∼40-picoliter detection volume. The use of diamond quantum sensors as in-line microfluidic NMR detectors is a major step toward applications in mass-limited chemical analysis and single-cell biology.

9.
Nat Commun ; 7: 12660, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27573190

RESUMEN

The nitrogen-vacancy (NV) centre in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge, which can be attained by optical excitation. Here, we use two-colour optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs, and to subsequently probe the corresponding redistribution of charge. We uncover the formation of spatial patterns of trapped charge, which we qualitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects. Further, by using the NV as a probe, we map the relative fraction of positively charged nitrogen on localized optical excitation. These observations may prove important to transporting quantum information between NVs or to developing three-dimensional, charge-based memories.

10.
Nat Commun ; 6: 8954, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26584676

RESUMEN

The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps. The small mass and high thermal conductivity of the diamond host make the time response of our technique short, which we demonstrate by monitoring the tip temperature upon application of a heat pulse. Our approach promises multiple applications, from the investigation of phonon dynamics in nanostructures to the characterization of heterogeneous phase transitions and chemical reactions in various solid-state systems.

11.
ACS Nano ; 7(4): 3403-10, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23565720

RESUMEN

Using a Hartman-Hahn protocol, we demonstrate spin polarization transfer from a single, optically polarized nitrogen-vacancy (NV) center to the ensemble of paramagnetic defects hosted by an individual diamond nanocrystal. Owing to the strong NV-bath coupling, the transfer takes place on a short, microsecond time scale. Upon fast repetition of the pulse sequence, we observe strong polarization transfer blockade, which we interpret as an indication of spin bath cooling. Numerical simulations indicate that the spin bath polarization is nonuniform throughout the nanoparticle, averaging approximately 5% over the crystal volume, but reaching up to 25% in the immediate vicinity of the NV. These observations may prove relevant to the planning of future bath-assisted magnetometry tests.


Asunto(s)
Cristalización/métodos , Diamante/química , Modelos Químicos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Simulación por Computador , Campos Magnéticos , Ensayo de Materiales , Tamaño de la Partícula , Marcadores de Spin , Propiedades de Superficie
12.
Nat Commun ; 4: 1651, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23552066

RESUMEN

Spin complexes comprising the nitrogen-vacancy centre and neighbouring spins are being considered as a building block for a new generation of spintronic and quantum information processing devices. As assembling identical spin clusters is difficult, new strategies are being developed to determine individual node structures with the highest precision. Here we use a pulse protocol to monitor the time evolution of the (13)C ensemble in the vicinity of a nitrogen-vacancy centre. We observe long-lived time correlations in the nuclear spin dynamics, limited by nitrogen-vacancy spin-lattice relaxation. We use the host (14)N spin as a quantum register and demonstrate that hyperfine-shifted resonances can be separated upon proper nitrogen-vacancy initialization. Intriguingly, we find that the amplitude of the correlation signal exhibits a sharp dependence on the applied magnetic field. We discuss this observation in the context of the quantum-to-classical transition proposed recently to explain the field dependence of the spin cluster dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA