RESUMEN
Microglia are embryonically seeded macrophages that contribute to brain development, homeostasis, and pathologies. It is thus essential to decipher how microglial properties are temporally regulated by intrinsic and extrinsic factors, such as sexual identity and the microbiome. Here, we found that microglia undergo differentiation phases, discernable by transcriptomic signatures and chromatin accessibility landscapes, which can diverge in adult males and females. Remarkably, the absence of microbiome in germ-free mice had a time and sexually dimorphic impact both prenatally and postnatally: microglia were more profoundly perturbed in male embryos and female adults. Antibiotic treatment of adult mice triggered sexually biased microglial responses revealing both acute and long-term effects of microbiota depletion. Finally, human fetal microglia exhibited significant overlap with the murine transcriptomic signature. Our study shows that microglia respond to environmental challenges in a sex- and time-dependent manner from prenatal stages, with major implications for our understanding of microglial contributions to health and disease.
Asunto(s)
Vida Libre de Gérmenes , Microbiota , Microglía/citología , Efectos Tardíos de la Exposición Prenatal/microbiología , Transcriptoma , Animales , Encéfalo/citología , Encéfalo/embriología , Encéfalo/metabolismo , Diferenciación Celular , Células Cultivadas , Ensamble y Desensamble de Cromatina , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Embarazo , Factores SexualesRESUMEN
Aging is associated with remodeling of the immune system to enable the maintenance of life-long immunity. In the CD8+ T cell compartment, aging results in the expansion of highly differentiated cells that exhibit characteristics of cellular senescence. Here we found that CD27-CD28-CD8+ T cells lost the signaling activity of the T cell antigen receptor (TCR) and expressed a protein complex containing the agonistic natural killer (NK) receptor NKG2D and the NK adaptor molecule DAP12, which promoted cytotoxicity against cells that expressed NKG2D ligands. Immunoprecipitation and imaging cytometry indicated that the NKG2D-DAP12 complex was associated with sestrin 2. The genetic inhibition of sestrin 2 resulted in decreased expression of NKG2D and DAP12 and restored TCR signaling in senescent-like CD27-CD28-CD8+ T cells. Therefore, during aging, sestrins induce the reprogramming of non-proliferative senescent-like CD27-CD28-CD8+ T cells to acquire a broad-spectrum, innate-like killing activity.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Senescencia Celular/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Proteínas Nucleares/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Citotoxicidad Inmunológica , Perfilación de la Expresión Génica , Humanos , Proteínas de la Membrana/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Células Asesinas Naturales/metabolismo , Transducción de Señal , Fiebre Amarilla/genética , Fiebre Amarilla/inmunología , Fiebre Amarilla/metabolismo , Fiebre Amarilla/virología , Virus de la Fiebre Amarilla/inmunologíaRESUMEN
Dendritic cells (DC) are currently classified as conventional DCs (cDCs) and plasmacytoid DCs (pDCs). Through a combination of single-cell transcriptomic analysis, mass cytometry, in vivo fate mapping and in vitro clonal assays, here we show that, at the single-cell level, the priming of mouse hematopoietic progenitor cells toward the pDC lineage occurs at the common lymphoid progenitor stage, indicative of early divergence of the pDC and cDC lineages. We found the transcriptional signature of a pDC precursor stage, defined here, in the IL-7Rα+ common lymphoid progenitor population and identified Ly6D, IL-7Rα, CD81 and CD2 as key markers of pDC differentiation, which distinguish pDC precursors from cDC precursors. In conclusion, pDCs developed in the bone marrow from a Ly6DhiCD2hi lymphoid progenitor cell and differentiated independently of the myeloid cDC lineage.
Asunto(s)
Antígenos Ly/metabolismo , Células Dendríticas/citología , Células Dendríticas/metabolismo , Células Progenitoras Linfoides/citología , Células Progenitoras Linfoides/metabolismo , Células Progenitoras Mieloides/citología , Células Progenitoras Mieloides/metabolismo , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biomarcadores , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Citometría de Flujo , Proteínas Ligadas a GPI/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Ratones , TranscriptomaRESUMEN
Tissue macrophages are immune cells whose phenotypes and functions are dictated by origin and niches. However, tissues are complex environments, and macrophage heterogeneity within the same organ has been overlooked so far. Here, we used high-dimensional approaches to characterize macrophage populations in the murine liver. We identified two distinct populations among embryonically derived Kupffer cells (KCs) sharing a core signature while differentially expressing numerous genes and proteins: a major CD206loESAM- population (KC1) and a minor CD206hiESAM+ population (KC2). KC2 expressed genes involved in metabolic processes, including fatty acid metabolism both in steady-state and in diet-induced obesity and hepatic steatosis. Functional characterization by depletion of KC2 or targeted silencing of the fatty acid transporter Cd36 highlighted a crucial contribution of KC2 in the liver oxidative stress associated with obesity. In summary, our study reveals that KCs are more heterogeneous than anticipated, notably describing a subpopulation wired with metabolic functions.
Asunto(s)
Antígenos CD36/metabolismo , Macrófagos del Hígado/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Estrés Oxidativo/fisiología , Animales , RatonesRESUMEN
Granulocyte-monocyte progenitors (GMPs) have been previously defined for their potential to generate various myeloid progenies such as neutrophils and monocytes. Although studies have proposed lineage heterogeneity within GMPs, it is unclear if committed progenitors already exist among these progenitors and how they may behave differently during inflammation. By combining single-cell transcriptomic and proteomic analyses, we identified the early committed progenitor within the GMPs responsible for the strict production of neutrophils, which we designate as proNeu1. Our dissection of the GMP hierarchy led us to further identify a previously unknown intermediate proNeu2 population. Similar populations could be detected in human samples. proNeu1s, but not proNeu2s, selectively expanded during the early phase of sepsis at the expense of monocytes. Collectively, our findings help shape the neutrophil maturation trajectory roadmap and challenge the current definition of GMPs.
Asunto(s)
Células Precursoras de Granulocitos/citología , Monocitos/citología , Mielopoyesis/fisiología , Neutrófilos/citología , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de la Célula IndividualRESUMEN
Human mononuclear phagocytes comprise phenotypically and functionally overlapping subsets of dendritic cells (DCs) and monocytes, but the extent of their heterogeneity and distinct markers for subset identification remains elusive. By integrating high-dimensional single-cell protein and RNA expression data, we identified distinct markers to delineate monocytes from conventional DC2 (cDC2s). Using CD88 and CD89 for monocytes and HLA-DQ and FcεRIα for cDC2s allowed for their specific identification in blood and tissues. We also showed that cDC2s could be subdivided into phenotypically and functionally distinct subsets based on CD5, CD163, and CD14 expression, including a distinct subset of circulating inflammatory CD5-CD163+CD14+ cells related to previously defined DC3s. These inflammatory DC3s were expanded in systemic lupus erythematosus patients and correlated with disease activity. These findings further unravel the heterogeneity of DC subpopulations in health and disease and may pave the way for the identification of specific DC subset-targeting therapies.
Asunto(s)
Biomarcadores/sangre , Células Dendríticas/inmunología , Inflamación/sangre , Inflamación/inmunología , Leucocitos Mononucleares/inmunología , Fagocitos/inmunología , Antígenos CD/sangre , Antígenos CD/inmunología , Células Cultivadas , Citometría de Flujo/métodos , Humanos , Lupus Eritematoso Sistémico/sangre , Lupus Eritematoso Sistémico/inmunología , Monocitos/inmunología , Fenotipo , Análisis de la Célula IndividualRESUMEN
Mouse conventional dendritic cells (cDCs) can be classified into two functionally distinct lineages: the CD8α(+) (CD103(+)) cDC1 lineage, and the CD11b(+) cDC2 lineage. cDCs arise from a cascade of bone marrow (BM) DC-committed progenitor cells that include the common DC progenitors (CDPs) and pre-DCs, which exit the BM and seed peripheral tissues before differentiating locally into mature cDCs. Where and when commitment to the cDC1 or cDC2 lineage occurs remains poorly understood. Here we found that transcriptional signatures of the cDC1 and cDC2 lineages became evident at the single-cell level from the CDP stage. We also identified Siglec-H and Ly6C as lineage markers that distinguished pre-DC subpopulations committed to the cDC1 lineage (Siglec-H(-)Ly6C(-) pre-DCs) or cDC2 lineage (Siglec-H(-)Ly6C(+) pre-DCs). Our results indicate that commitment to the cDC1 or cDC2 lineage occurs in the BM and not in the periphery.
Asunto(s)
Células de la Médula Ósea/inmunología , Linaje de la Célula/inmunología , Células Dendríticas/inmunología , Células Madre/inmunología , Animales , Antígenos CD/inmunología , Antígenos CD/metabolismo , Antígenos Ly/genética , Antígenos Ly/inmunología , Antígenos Ly/metabolismo , Células de la Médula Ósea/metabolismo , Antígeno CD11b/inmunología , Antígeno CD11b/metabolismo , Antígenos CD8/inmunología , Antígenos CD8/metabolismo , Linaje de la Célula/genética , Células Cultivadas , Análisis por Conglomerados , Células Dendríticas/metabolismo , Células Dendríticas/ultraestructura , Citometría de Flujo , Cadenas alfa de Integrinas/inmunología , Cadenas alfa de Integrinas/metabolismo , Lectinas/genética , Lectinas/inmunología , Lectinas/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Rastreo , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunología , Receptores de Superficie Celular/metabolismo , Análisis de la Célula Individual/métodos , Células Madre/metabolismo , Transcriptoma/genética , Transcriptoma/inmunologíaRESUMEN
Neutrophils are specialized innate cells that require constant replenishment from proliferative bone marrow (BM) precursors as a result of their short half-life. Although it is established that neutrophils are derived from the granulocyte-macrophage progenitor (GMP), the differentiation pathways from GMP to functional mature neutrophils are poorly defined. Using mass cytometry (CyTOF) and cell-cycle-based analysis, we identified three neutrophil subsets within the BM: a committed proliferative neutrophil precursor (preNeu) which differentiates into non-proliferating immature neutrophils and mature neutrophils. Transcriptomic profiling and functional analysis revealed that preNeu require the C/EBPε transcription factor for their generation from the GMP, and their proliferative program is substituted by a gain of migratory and effector function as they mature. preNeus expand under microbial and tumoral stress, and immature neutrophils are recruited to the periphery of tumor-bearing mice. In summary, our study identifies specialized BM granulocytic populations that ensure supply under homeostasis and stress responses.
Asunto(s)
Células de la Médula Ósea/fisiología , Neutrófilos/fisiología , Animales , Células de la Médula Ósea/inmunología , Proteínas Potenciadoras de Unión a CCAAT/fisiología , Linaje de la Célula , Movimiento Celular , Proliferación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Ratones , Neoplasias Experimentales/inmunología , Neutrófilos/inmunologíaRESUMEN
Tissue macrophages arise during embryogenesis from yolk-sac (YS) progenitors that give rise to primitive YS macrophages. Until recently, it has been impossible to isolate or derive sufficient numbers of YS-derived macrophages for further study, but data now suggest that induced pluripotent stem cells (iPSCs) can be driven to undergo a process reminiscent of YS-hematopoiesis in vitro. We asked whether iPSC-derived primitive macrophages (iMacs) can terminally differentiate into specialized macrophages with the help of growth factors and organ-specific cues. Co-culturing human or murine iMacs with iPSC-derived neurons promoted differentiation into microglia-like cells in vitro. Furthermore, murine iMacs differentiated in vivo into microglia after injection into the brain and into functional alveolar macrophages after engraftment in the lung. Finally, iPSCs from a patient with familial Mediterranean fever differentiated into iMacs with pro-inflammatory characteristics, mimicking the disease phenotype. Altogether, iMacs constitute a source of tissue-resident macrophage precursors that can be used for biological, pathophysiological, and therapeutic studies.
Asunto(s)
Técnicas de Cultivo de Célula/métodos , Hematopoyesis , Macrófagos/fisiología , Neuronas/fisiología , Células Madre Pluripotentes/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Embrión de Mamíferos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , NeurogénesisRESUMEN
Dendritic cells (DCs) are professional antigen-presenting cells that hold great therapeutic potential. Multiple DC subsets have been described, and it remains challenging to align them across tissues and species to analyze their function in the absence of macrophage contamination. Here, we provide and validate a universal toolbox for the automated identification of DCs through unsupervised analysis of conventional flow cytometry and mass cytometry data obtained from multiple mouse, macaque, and human tissues. The use of a minimal set of lineage-imprinted markers was sufficient to subdivide DCs into conventional type 1 (cDC1s), conventional type 2 (cDC2s), and plasmacytoid DCs (pDCs) across tissues and species. This way, a large number of additional markers can still be used to further characterize the heterogeneity of DCs across tissues and during inflammation. This framework represents the way forward to a universal, high-throughput, and standardized analysis of DC populations from mutant mice and human patients.
Asunto(s)
Células Dendríticas/fisiología , Animales , Diferenciación Celular/fisiología , Citometría de Flujo , Humanos , Inflamación/patología , Macaca , Ratones , Ratones Endogámicos C57BLRESUMEN
OBJECTIVES: Platelets and low-density neutrophils (LDNs) are major players in the immunopathogenesis of SLE. Despite evidence showing the importance of platelet-neutrophil complexes (PNCs) in inflammation, little is known about the relationship between LDNs and platelets in SLE. We sought to characterize the role of LDNs and Toll-like receptor 7 (TLR7) in clinical disease. METHODS: Flow cytometry was used to immunophenotype LDNs from SLE patients and controls. The association of LDNs with organ damage was investigated in a cohort of 290 SLE patients. TLR7 mRNA expression was assessed in LDNs and high-density neutrophils (HDNs) using publicly available mRNA sequencing datasets and our own cohort using RT-PCR. The role of TLR7 in platelet binding was evaluated in platelet-HDN mixing studies using TLR7-deficient mice and Klinefelter syndrome patients. RESULTS: SLE patients with active disease have more LDNs, which are heterogeneous and more immature in patients with evidence of kidney dysfunction. LDNs are platelet bound, in contrast to HDNs. LDNs settle in the peripheral blood mononuclear cell (PBMC) layer due to the increased buoyancy and neutrophil degranulation from platelet binding. Mixing studies demonstrated that this PNC formation was dependent on platelet-TLR7 and that the association results in increased NETosis. The neutrophil:platelet ratio is a useful clinical correlate for LDNs, and a higher NPR is associated with past and current flares of LN. CONCLUSIONS: LDNs sediment in the upper PBMC fraction due to PNC formation, which is dependent on the expression of TLR7 in platelets. Collectively, our results reveal a novel TLR7-dependent crosstalk between platelets and neutrophils that may be an important therapeutic opportunity for LN.
Asunto(s)
Nefritis Lúpica , Neutrófilos , Animales , Humanos , Ratones , Leucocitos Mononucleares , Nefritis Lúpica/patología , Neutrófilos/metabolismo , ARN Mensajero/metabolismo , Receptor Toll-Like 7/genéticaRESUMEN
Infection by pathogenic microbes is widely hypothesized to be a risk factor for the development of neurocognitive disorders and dementia, but evidence remains limited. We analyzed the association of seropositivity to 11 common pathogens and cumulative infection burden with neurocognitive disorder (mild cognitive impairment and dementia) in a population-based cohort of 475 older individuals (mean age = 67.6 y) followed up over 3-5 years for the risk of MCI-dementia. Specific seropositivities showed a preponderance of positive trends of association with MCI-dementia, including for Plasmodium, H. pylori, and RSV (p < 0.05), as well as Chickungunya, HSV-2, CMV and EBV (p > 0.05), while HSV-1 and HHV-6 showed equivocal or no associations, and Dengue and VZV showed negative associations (p < 0.05) with MCI-dementia. High infection burden (5 + cumulated infections) was significantly associated with an increased MCI-dementia risk in comparison with low infection burden (1-3 cumulative infections), adjusted for age, sex, and education. Intriguingly, for a majority (8 of 11) of pathogens, levels of antibody titers were significantly lower in those with MCI-dementia compared to cognitive normal individuals. Based on our observations, we postulate that individuals who are unable to mount strong immunological responses to infection by diverse microorganisms, and therefore more vulnerable to infection by greater numbers of different microbial pathogens or repeated infections to the same pathogen in the course of their lifetime are more likely to develop MCI or dementia. This hypothesis should be tested in more studies.
Asunto(s)
Disfunción Cognitiva , Demencia , Humanos , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/inmunología , Demencia/epidemiología , Demencia/inmunología , Femenino , Masculino , Anciano , Factores de Riesgo , Persona de Mediana Edad , Anciano de 80 o más Años , Estudios de Cohortes , Infecciones/epidemiología , Infecciones/inmunologíaRESUMEN
Although classified as hematopoietic cells, tissue-resident macrophages (MFs) arise from embryonic precursors that seed the tissues prior to birth to generate a self-renewing population, which is maintained independently of adult hematopoiesis. Here we reveal the identity of these embryonic precursors using an in utero MF-depletion strategy and fate-mapping of yolk sac (YS) and fetal liver (FL) hematopoiesis. We show that YS MFs are the main precursors of microglia, while most other MFs derive from fetal monocytes (MOs). Both YS MFs and fetal MOs arise from erythro-myeloid progenitors (EMPs) generated in the YS. In the YS, EMPs gave rise to MFs without monocytic intermediates, while EMP seeding the FL upon the establishment of blood circulation acquired c-Myb expression and gave rise to fetal MOs that then seeded embryonic tissues and differentiated into MFs. Thus, adult tissue-resident MFs established from hematopoietic stem cell-independent embryonic precursors arise from two distinct developmental programs.
Asunto(s)
Envejecimiento/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Células Progenitoras Mieloides/inmunología , Proteínas Proto-Oncogénicas c-myb/inmunología , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Linaje de la Célula/inmunología , Rastreo Celular , Embrión de Mamíferos , Femenino , Feto , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/inmunología , Riñón/citología , Riñón/inmunología , Hígado/citología , Hígado/inmunología , Pulmón/citología , Pulmón/inmunología , Macrófagos/citología , Ratones , Microglía/citología , Microglía/inmunología , Monocitos/citología , Células Progenitoras Mieloides/citología , Embarazo , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-myb/metabolismo , Piel/citología , Piel/inmunología , Saco Vitelino/citología , Saco Vitelino/inmunologíaRESUMEN
Various forms of immunotherapy, such as checkpoint blockade immunotherapy, are proving to be effective at restoring T cell-mediated immune responses that can lead to marked and sustained clinical responses, but only in some patients and cancer types1-4. Patients and tumours may respond unpredictably to immunotherapy partly owing to heterogeneity of the immune composition and phenotypic profiles of tumour-infiltrating lymphocytes (TILs) within individual tumours and between patients5,6. Although there is evidence that tumour-mutation-derived neoantigen-specific T cells play a role in tumour control2,4,7-10, in most cases the antigen specificities of phenotypically diverse tumour-infiltrating T cells are largely unknown. Here we show that human lung and colorectal cancer CD8+ TILs can not only be specific for tumour antigens (for example, neoantigens), but also recognize a wide range of epitopes unrelated to cancer (such as those from Epstein-Barr virus, human cytomegalovirus or influenza virus). We found that these bystander CD8+ TILs have diverse phenotypes that overlap with tumour-specific cells, but lack CD39 expression. In colorectal and lung tumours, the absence of CD39 in CD8+ TILs defines populations that lack hallmarks of chronic antigen stimulation at the tumour site, supporting their classification as bystanders. Expression of CD39 varied markedly between patients, with some patients having predominantly CD39- CD8+ TILs. Furthermore, frequencies of CD39 expression among CD8+ TILs correlated with several important clinical parameters, such as the mutation status of lung tumour epidermal growth factor receptors. Our results demonstrate that not all tumour-infiltrating T cells are specific for tumour antigens, and suggest that measuring CD39 expression could be a straightforward way to quantify or isolate bystander T cells.
Asunto(s)
Efecto Espectador/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Neoplasias Colorrectales/inmunología , Neoplasias Pulmonares/inmunología , Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/inmunología , Antígenos de Neoplasias/inmunología , Antígenos Virales/inmunología , Apirasa/análisis , Apirasa/deficiencia , Apirasa/metabolismo , Linfocitos T CD8-positivos/metabolismo , Separación Celular , Neoplasias Colorrectales/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Linfocitos Infiltrantes de Tumor/metabolismo , FenotipoRESUMEN
BACKGROUND: Epithelial Ovarian cancer (EOC) is the leading cause of death associated with gynecologic tumors. Because the disease is asymptomatic in early-stage, the majority of patients are not diagnosed until late stages, highlighting the need for the development of novel diagnostic biomarkers. Mediators of tumoral microenvironment may affect EOC progression and resistance to treatment. AIM OF THE STUDY: Analysis of serum proteins to identify a panel of theranostic biomarkers for EOC. PATIENTS AND METHODS: Serum levels of 65 analytes were determined in EOC patients, and healthy controls with the ProcartaPlex Human Immune Monitoring 65-Plex Panel. RESULTS: Twenty-one analytes: 7 cytokines (IFN-γ, IL-12p70, IL-13, IL-18 and TSLP), 7 chemokines (Eotaxin, eotaxin-2, IP-10, BLC, I-TAC, SDF-1α, and fractalkine), 2 growth factors (MMP-1, VEGF-α), and 5 soluble receptors (APRIL, CD40L, TWEAK, CD30 and TNFRII; were significantly differentially expressed between the two groups. ROC curves showed that only seven of them (IL-9, TNF-α, Eotaxin, IP-10, BLC, Fractalkine, and Tweak) had AUC values greater than 0.70 and thus had potential clinical utility. Moreover, five cytokines: IFN-γ, IL-1 ß, IL-8, MIP-1ß, and TNF-α are positively associated with patients who developed resistance to taxol-platinum-based chemotherapy (CT). CONCLUSION: This study has revealed a first panel of 7 analytes (IL-9, TNF-α, Eotaxin, IP-10, BLC, Fractalkine and Tweak) that can be used for early detection of EOC and a second panel of five cytokines (IFN-γ, IL-1ß, IL-8, MIP-1ß, TNF-α) that can help clinicians to identify EOC patients who are at higher risk to develop resistance to CT of EOC.
Asunto(s)
Quimiocina CX3CL1 , Neoplasias Ováricas , Humanos , Femenino , Carcinoma Epitelial de Ovario , Quimiocina CXCL10 , Factor de Necrosis Tumoral alfa , Quimiocina CCL4 , Medicina de Precisión , Interleucina-8 , Interleucina-9 , Citocinas/metabolismo , Biomarcadores , Microambiente TumoralRESUMEN
BACKGROUND: Inflammatory breast cancer (IBC), accounts for the majority of deaths associated with breast tumors. Because this form is aggressive from its appearance and has a strong metastatic potential. The majority of patients are not diagnosed until late stages, highlighting the need for the development of novel diagnostic biomarkers. Immune mediators may affect IBC progression and metastasis installation. AIM OF THE STUDY: Analysis of serum proteins to identify a panel of prognostic biomarkers for IBC. PATIENTS AND METHODS: Serum levels of 65 analytes were determined in IBC and Non-IBC patients with the ProcartaPlex Human Immune Monitoring 65-Plex Panel. RESULTS: Fifteen analytes: 5 cytokines (IL-8, IL-16, IL-21, IL-22 and MIF), 7 chemokines (Eotaxin, eotaxin-3, Fractalkine, IP-10, MIP-1α, MIP-1ß and SDF-1α), One growth factors (FGF-2) and 2 soluble receptors (TNFRII and Tweak); were significantly differentially expressed between the two groups. ROC curves showed that twelve of them (IL-8, IL-16, IL-21, IL-22, MIF, MIP-1α, MIP-1ß, SDF-1α, TNFRII, FGF-2, Eotaxin-3, and Fractalkine) had AUC values greater than 0.70 and thus had potential clinical utility. Moreover, seven cytokines: IL-8, IL-16, MIF, Eotaxin-3, MIP-1α, MIP-1ß, and CD-30 are positively associated with patients who developed distant metastasis. Ten analytes: Eotaxin-3, Fractalkine, IL-16, IL-1α, IL-22, IL-8, MIF, MIP-1α, MIP-1ß, and TNFRII are positively associated with patients who had Lymph-Nodes invasion. CONCLUSION: This study has uncovered a set of 8 analytes (Eotaxin-3, Fractalkine, IL-16, IL-8, IL-22, MIF, MIP-1α, MIP-1ß) that can be used as biomarkers of IBC, and can be utilized for early detection of IBC, preventing metastasis and lymph-Nodes invasion.
Asunto(s)
Quimiocina CX3CL1 , Neoplasias Inflamatorias de la Mama , Humanos , Quimiocina CCL3 , Quimiocina CCL4 , Quimiocina CCL26 , Interleucina-8 , Quimiocina CXCL12 , Interleucina-16 , Factor 2 de Crecimiento de Fibroblastos , Citocinas/metabolismo , BiomarcadoresRESUMEN
Dendritic cells (DCs), monocytes, and macrophages are leukocytes with critical roles in immunity and tolerance. The DC network is evolutionarily conserved; the homologs of human tissue CD141(hi)XCR1⺠CLEC9A⺠DCs and CD1c⺠DCs are murine CD103⺠DCs and CD64⻠CD11b⺠DCs. In addition, human tissues also contain CD14⺠cells, currently designated as DCs, with an as-yet unknown murine counterpart. Here we have demonstrated that human dermal CD14⺠cells are a tissue-resident population of monocyte-derived macrophages with a short half-life of <6 days. The decline and reconstitution kinetics of human blood CD14⺠monocytes and dermal CD14⺠cells in vivo supported their precursor-progeny relationship. The murine homologs of human dermal CD14⺠cells are CD11b⺠CD64⺠monocyte-derived macrophages. Human and mouse monocytes and macrophages were defined by highly conserved gene transcripts, which were distinct from DCs. The demonstration of monocyte-derived macrophages in the steady state in human tissue supports a conserved organization of human and mouse mononuclear phagocyte system.
Asunto(s)
Receptores de Lipopolisacáridos/metabolismo , Macrófagos/inmunología , Piel/inmunología , Animales , Antígeno CD11b/biosíntesis , Diferenciación Celular/inmunología , Linaje de la Célula/inmunología , Movimiento Celular/inmunología , Células Cultivadas , Células Dendríticas/inmunología , Femenino , Humanos , Memoria Inmunológica/inmunología , Ratones , Ratones Transgénicos , Receptores de IgG/biosíntesis , Piel/citología , Linfocitos T/inmunologíaRESUMEN
During gestation the developing human fetus is exposed to a diverse range of potentially immune-stimulatory molecules including semi-allogeneic antigens from maternal cells, substances from ingested amniotic fluid, food antigens, and microbes. Yet the capacity of the fetal immune system, including antigen-presenting cells, to detect and respond to such stimuli remains unclear. In particular, dendritic cells, which are crucial for effective immunity and tolerance, remain poorly characterized in the developing fetus. Here we show that subsets of antigen-presenting cells can be identified in fetal tissues and are related to adult populations of antigen-presenting cells. Similar to adult dendritic cells, fetal dendritic cells migrate to lymph nodes and respond to toll-like receptor ligation; however, they differ markedly in their response to allogeneic antigens, strongly promoting regulatory T-cell induction and inhibiting T-cell tumour-necrosis factor-α production through arginase-2 activity. Our results reveal a previously unappreciated role of dendritic cells within the developing fetus and indicate that they mediate homeostatic immune-suppressive responses during gestation.
Asunto(s)
Arginasa/metabolismo , Células Dendríticas/enzimología , Células Dendríticas/inmunología , Feto/inmunología , Tolerancia Inmunológica , Linfocitos T/inmunología , Adulto , Movimiento Celular , Proliferación Celular , Citocinas/biosíntesis , Citocinas/inmunología , Feto/citología , Feto/enzimología , Humanos , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Linfocitos T/citología , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Receptores Toll-Like/inmunologíaRESUMEN
BACKGROUND: Cord blood leptin and adiponectin are adipokines known to be associated with birth weight and overall infant adiposity. However, few studies have investigated their associations with abdominal adiposity in neonates. We examined maternal factors associated with cord blood leptin and adiponectin, and the association of these adipokines with neonatal adiposity and abdominal fat distribution measured by magnetic resonance imaging (MRI) in an Asian mother-offspring cohort. METHODS: Growing Up in Singapore Towards healthy Outcomes (GUSTO), is a prospective mother-offspring birth cohort study in Singapore. Cord blood plasma leptin and adiponectin concentrations were measured using Luminex and Enzyme-Linked Immunosorbent Assay respectively in 816 infants. A total of 271 neonates underwent MRI within the first 2-weeks after delivery. Abdominal superficial (sSAT), deep subcutaneous (dSAT), and intra-abdominal (IAT) adipose tissue compartment volumes were quantified from MRI images. Multivariable regression analyses were performed. RESULTS: Indian or Malay ethnicity, female sex, and gestational age were positively associated with cord blood leptin and adiponectin concentrations. Maternal gestational diabetes (GDM) positively associated with cord blood leptin concentrations but inversely associated with cord blood adiponectin concentrations. Maternal pre-pregnancy body mass index (BMI) showed a positive relationship with cord blood leptin but not with adiponectin concentrations. Each SD increase in cord blood leptin was associated with higher neonatal sSAT, dSAT and IAT; differences in SD (95% CI): 0.258 (0.142, 0.374), 0.386 (0.254, 0.517) and 0.250 (0.118, 0.383), respectively. Similarly, each SD increase in cord blood adiponectin was associated with higher neonatal sSAT and dSAT; differences in SD (95% CI): 0.185 (0.096, 0.274) and 0.173 (0.067, 0.278), respectively. The association between cord blood adiponectin and neonatal adiposity was observed in neonates of obese mothers only. CONCLUSIONS: Cord blood leptin and adiponectin concentrations were associated with ethnicity, maternal BMI and GDM, sex and gestational age. Both adipokines showed positive association with neonatal abdominal adiposity.