Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(1): 147-162, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37640028

RESUMEN

Multiple sclerosis is a chronic neuroinflammatory disorder characterized by demyelination, oligodendrocyte damage/loss and neuroaxonal injury in the context of immune cell infiltration in the CNS. No neuroprotective therapy is available to promote the survival of oligodendrocytes and protect their myelin processes in immune-mediated demyelinating diseases. Pro-inflammatory CD4 Th17 cells can interact with oligodendrocytes in multiple sclerosis and its animal model, causing injury to myelinating processes and cell death through direct contact. However, the molecular mechanisms underlying the close contact and subsequent detrimental interaction of Th17 cells with oligodendrocytes remain unclear. In this study we used single cell RNA sequencing, flow cytometry and immunofluorescence studies on CNS tissue from multiple sclerosis subjects, its animal model and controls to characterize the expression of cell adhesion molecules by mature oligodendrocytes. We found that a significant proportion of human and murine mature oligodendrocytes express melanoma cell adhesion molecule (MCAM) and activated leukocyte cell adhesion molecule (ALCAM) in multiple sclerosis, in experimental autoimmune encephalomyelitis and in controls, although their regulation differs between human and mouse. We observed that exposure to pro-inflammatory cytokines or to human activated T cells are associated with a marked downregulation of the expression of MCAM but not of ALCAM at the surface of human primary oligodendrocytes. Furthermore, we used in vitro live imaging, immunofluorescence and flow cytometry to determine the contribution of these molecules to Th17-polarized cell adhesion and cytotoxicity towards human oligodendrocytes. Silencing and blocking ALCAM but not MCAM limited prolonged interactions between human primary oligodendrocytes and Th17-polarized cells, resulting in decreased adhesion of Th17-polarized cells to oligodendrocytes and conferring significant protection of oligodendrocytic processes. In conclusion, we showed that human oligodendrocytes express MCAM and ALCAM, which are differently modulated by inflammation and T cell contact. We found that ALCAM is a ligand for Th17-polarized cells, contributing to their capacity to adhere and induce damage to human oligodendrocytes, and therefore could represent a relevant target for neuroprotection in multiple sclerosis.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Humanos , Ratones , Animales , Linfocitos T CD4-Positivos/metabolismo , Molécula de Adhesión Celular del Leucocito Activado/metabolismo , Adhesión Celular , Oligodendroglía/metabolismo
2.
J Med Genet ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38977299

RESUMEN

OBJECTIVE: This study aims to develop and internally validate a clinical risk score to predict incident renal angiomyolipoma (AML) and pulmonary lymphangioleiomyomatosis (LAM) in people with tuberous sclerosis complex (TSC). STUDY DESIGN: Data from 2420 participants in the TSC Alliance Natural History Database were leveraged for these analyses. Logistic regression was used to predict AML and LAM development using 10 early-onset clinical manifestations of TSC as potential predictors, in addition to sex and genetic mutation. For our models, we divided AML into three separate outcomes: presence or absence of AML, unilateral or bilateral and whether any are ≥3 cm in diameter. The resulting regression models were turned into clinical risk scores which were then internally validated using bootstrap resampling, measuring discrimination and calibration. RESULTS: The lowest clinical risk scores predicted a risk of AML and LAM of 1% and 0%, while the highest scores predicted a risk of 99% and 73%, respectively. Calibration was excellent for all three AML outcomes and good for LAM. Discrimination ranged from good to strong. C-statistics of 0.84, 0.83, 0.83 and 0.92 were seen for AML, bilateral AML, AML with a lesion≥3 cm and LAM, respectively. CONCLUSION: Our work is an important step towards identifying individuals who could benefit from preventative strategies as well as more versus less frequent screening imaging. We expect that our work will allow for more personalised medicine in people with TSC. External validation of the risk scores will be important to confirm the robustness of our findings.

3.
J Neurochem ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702968

RESUMEN

Ependymal cells form a specialized brain-cerebrospinal fluid (CSF) interface and regulate local CSF microcirculation. It is becoming increasingly recognized that ependymal cells assume a reactive state in response to aging and disease, including conditions involving hypoxia, hydrocephalus, neurodegeneration, and neuroinflammation. Yet what transcriptional signatures govern these reactive states and whether this reactivity shares any similarities with classical descriptions of glial reactivity (i.e., in astrocytes) remain largely unexplored. Using single-cell transcriptomics, we interrogated this phenomenon by directly comparing the reactive ependymal cell transcriptome to the reactive astrocyte transcriptome using a well-established model of autoimmune-mediated neuroinflammation (MOG35-55 EAE). In doing so, we unveiled core glial reactivity-associated genes that defined the reactive ependymal cell and astrocyte response to MOG35-55 EAE. Interestingly, known reactive astrocyte genes from other CNS injury/disease contexts were also up-regulated by MOG35-55 EAE ependymal cells, suggesting that this state may be conserved in response to a variety of pathologies. We were also able to recapitulate features of the reactive ependymal cell state acutely using a classic neuroinflammatory cocktail (IFNγ/LPS) both in vitro and in vivo. Taken together, by comparing reactive ependymal cells and astrocytes, we identified a conserved signature underlying glial reactivity that was present in several neuroinflammatory contexts. Future work will explore the mechanisms driving ependymal reactivity and assess downstream functional consequences.

4.
Brain ; 146(4): 1483-1495, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36319587

RESUMEN

The trafficking of autoreactive leucocytes across the blood-brain barrier endothelium is a hallmark of multiple sclerosis pathogenesis. Although the blood-brain barrier endothelium represents one of the main CNS borders to interact with the infiltrating leucocytes, its exact contribution to neuroinflammation remains understudied. Here, we show that Mcam identifies inflammatory brain endothelial cells with pro-migratory transcriptomic signature during experimental autoimmune encephalomyelitis. In addition, MCAM was preferentially upregulated on blood-brain barrier endothelial cells in multiple sclerosis lesions in situ and at experimental autoimmune encephalomyelitis disease onset by molecular MRI. In vitro and in vivo, we demonstrate that MCAM on blood-brain barrier endothelial cells contributes to experimental autoimmune encephalomyelitis development by promoting the cellular trafficking of TH1 and TH17 lymphocytes across the blood-brain barrier. Last, we showcase ST14 as an immune ligand to brain endothelial MCAM, enriched on CD4+ T lymphocytes that cross the blood-brain barrier in vitro, in vivo and in multiple sclerosis lesions as detected by flow cytometry on rapid autopsy derived brain tissue from multiple sclerosis patients. Collectively, our findings reveal that MCAM is at the centre of a pathological pathway used by brain endothelial cells to recruit pathogenic CD4+ T lymphocyte from circulation early during neuroinflammation. The therapeutic targeting of this mechanism is a promising avenue to treat multiple sclerosis.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Humanos , Barrera Hematoencefálica/patología , Encéfalo/patología , Antígeno CD146/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Células Endoteliales/metabolismo , Endotelio/metabolismo , Endotelio/patología , Esclerosis Múltiple/patología , Enfermedades Neuroinflamatorias
5.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34417310

RESUMEN

T helper (Th)17 cells are considered to contribute to inflammatory mechanisms in diseases such as multiple sclerosis (MS). However, the discussion persists regarding their true role in patients. Here, we visualized central nervous system (CNS) inflammatory processes in models of MS live in vivo and in MS brains and discovered that CNS-infiltrating Th17 cells form prolonged stable contact with oligodendrocytes. Strikingly, compared to Th2 cells, direct contact with Th17 worsened experimental demyelination, caused damage to human oligodendrocyte processes, and increased cell death. Importantly, we found that in comparison to Th2 cells, both human and murine Th17 cells express higher levels of the integrin CD29, which is linked to glutamate release pathways. Of note, contact of human Th17 cells with oligodendrocytes triggered release of glutamate, which induced cell stress and changes in biosynthesis of cholesterol and lipids, as revealed by single-cell RNA-sequencing analysis. Finally, exposure to glutamate decreased myelination, whereas blockade of CD29 preserved oligodendrocyte processes from Th17-mediated injury. Our data provide evidence for the direct and deleterious attack of Th17 cells on the myelin compartment and show the potential for therapeutic opportunities in MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inducido químicamente , Glicoproteína Mielina-Oligodendrócito/farmacología , Oligodendroglía/efectos de los fármacos , Células Th17/fisiología , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Adyuvante de Freund , Inflamación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Oligodendroglía/metabolismo , Toxina del Pertussis/toxicidad
6.
Immunol Cell Biol ; 101(1): 65-77, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36260372

RESUMEN

Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been implicated in numerous chronic inflammatory diseases, including multiple sclerosis (MS). GM-CSF impacts multiple properties and functions of myeloid cells via species-specific mechanisms. Therefore, we assessed the effect of GM-CSF on different human myeloid cell populations found in MS lesions: monocyte-derived macrophages (MDMs) and microglia. We previously reported a greater number of interleukin (IL)-15+ myeloid cells in the brain of patients with MS than in controls. Therefore, we investigated whether GM-CSF exerts its deleterious effects in MS by increasing IL-15 expression on myeloid cells. We found that GM-CSF increased the proportion of IL-15+ cells and/or IL-15 levels on nonpolarized, M1-polarized and M2-polarized MDMs from healthy donors and patients with MS. GM-CSF also increased IL-15 levels on human adult microglia. When cocultured with GM-CSF-stimulated MDMs, activated autologous CD8+ T lymphocytes secreted and expressed significantly higher levels of effector molecules (e.g. interferon-γ and GM-CSF) compared with cocultures with unstimulated MDMs. However, neutralizing IL-15 did not attenuate enhanced effector molecule expression on CD8+ T lymphocytes triggered by GM-CSF-stimulated MDMs. We showed that GM-CSF stimulation of MDMs increased their expression of CD80 and ICAM-1 and their secretion of IL-6, IL-27 and tumor necrosis factor. These molecules could participate in boosting the effector properties of CD8+ T lymphocytes independently of IL-15. By contrast, GM-CSF did not alter CD80, IL-27, tumor necrosis factor and chemokine (C-X-C motif) ligand 10 expression/secretion by human microglia. Therefore, our results underline the distinct impact of GM-CSF on human myeloid cells abundantly present in MS lesions.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Interleucina-27 , Humanos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Interleucina-15 , Macrófagos/metabolismo , Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa
7.
Ann Neurol ; 91(2): 178-191, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34952986

RESUMEN

OBJECTIVE: Myelin regeneration in the human central nervous system relies on progenitor cells within the tissue parenchyma, with possible contribution from previously myelinating oligodendrocytes (OLs). In multiple sclerosis, a demyelinating disorder, variables affecting remyelination efficiency include age, severity of initial injury, and progenitor cell properties. Our aim was to investigate the effects of age and differentiation on the myelination potential of human OL lineage cells. METHODS: We derived viable primary OL lineage cells from surgical resections of pediatric and adult brain tissue. Ensheathment capacity using nanofiber assays and transcriptomic profiles from RNA sequencing were compared between A2B5+ antibody-selected progenitors and mature OLs (non-selected cells). RESULTS: We demonstrate that pediatric progenitor and mature cells ensheathed nanofibers more robustly than did adult progenitor and mature cells, respectively. Within both age groups, the percentage of fibers ensheathed and ensheathment length per fiber were greater for A2B5+ progenitors. Gene expression of OL progenitor markers PDGFRA and PTPRZ1 were higher in A2B5+ versus A2B5- cells and in pediatric A2B5+ versus adult A2B5+ cells. The p38 MAP kinases and actin cytoskeleton-associated pathways were upregulated in pediatric cells; both have been shown to regulate OL process outgrowth. Significant upregulation of "cell senescence" genes was detected in pediatric samples; this could reflect their role in development and the increased susceptibility of pediatric OLs to activating cell death responses to stress. INTERPRETATION: Our findings identify specific biological pathways relevant to myelination that are differentially enriched in human pediatric and adult OL lineage cells and suggest potential targets for remyelination enhancing therapies. ANN NEUROL 2022;91:178-191.


Asunto(s)
Envejecimiento/fisiología , Diferenciación Celular/fisiología , Senescencia Celular/fisiología , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Adulto , Muerte Celular , Linaje de la Célula , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Células-Madre Neurales , RNA-Seq , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Transcriptoma , Adulto Joven
8.
Brain ; 145(12): 4320-4333, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-35202462

RESUMEN

Early multiple sclerosis lesions feature relative preservation of oligodendrocyte cell bodies with dying back retraction of their myelinating processes. Cell loss occurs with disease progression. Putative injury mediators include metabolic stress (low glucose/nutrient), pro-inflammatory mediators (interferon γ and tumour necrosis factor α), and excitotoxins (glutamate). Our objective was to compare the impact of these disease relevant mediators on the injury responses of human mature oligodendrocytes. In the current study, we determined the effects of these mediators on process extension and survival of human brain derived mature oligodendrocytes in vitro and used bulk RNA sequencing to identify distinct effector mechanisms that underlie the responses. All mediators induced significant process retraction of the oligodendrocytes in dissociated cell culture. Only metabolic stress (low glucose/nutrient) conditions resulted in delayed (4-6 days) non-apoptotic cell death. Metabolic effects were associated with induction of the integrated stress response, which can be protective or contribute to cell injury dependent on its level and duration of activation. Addition of Sephin1, an agonist of the integrated stress response induced process retraction under control conditions and further enhanced retraction under metabolic stress conditions. The antagonist ISRIB restored process outgrowth under stress conditions, and if added to already stressed cells, reduced delayed cell death and prolonged the period in which recovery could occur. Inflammatory cytokine functional effects were associated with activation of multiple signalling pathways (including Jak/Stat-1) that regulate process outgrowth, without integrated stress response induction. Glutamate application produced limited transcriptional changes suggesting a contribution of effects directly on cell processes. Our comparative studies indicate the need to consider both the specific injury mediators and the distinct cellular mechanisms of responses to them by human oligodendrocytes to identify effective neuroprotective therapies for multiple sclerosis.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/patología , Oligodendroglía/metabolismo , Encéfalo/patología , Muerte Celular , Glucosa/metabolismo , Células Cultivadas
9.
Glia ; 70(10): 1938-1949, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35735919

RESUMEN

Morphological and emerging molecular studies have provided evidence for heterogeneity within the oligodendrocyte population. To address the regional and age-related heterogeneity of human mature oligodendrocytes (MOLs) we applied single-cell RNA sequencing to cells isolated from cortical/subcortical, subventricular zone brain tissue samples, and thoracolumbar spinal cord samples. Unsupervised clustering of cells identified transcriptionally distinct MOL subpopulations across regions. Spinal cord MOLs, but not microglia, exhibited cell-type-specific upregulation of immune-related markers compared to the other adult regions. SVZ MOLs showed an upregulation of select number of development-linked transcription factors compared to other regions; however, pseudotime trajectory analyses did not identify a global developmental difference. Age-related analysis of cortical/subcortical samples indicated that pediatric MOLs, especially from under age 5, retain higher expression of genes linked to development and to immune activity with pseudotime analysis favoring a distinct developmental stage. Our regional and age-related studies indicate heterogeneity of MOL populations in the human CNS that may reflect developmental and environmental influences.


Asunto(s)
Oligodendroglía , Médula Espinal , Encéfalo , Niño , Preescolar , Humanos , Microglía , Oligodendroglía/metabolismo
10.
BMC Biotechnol ; 22(1): 14, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35549895

RESUMEN

BACKGROUND: The discovery of the CRISPR-Cas9 system and its applicability in mammalian embryos has revolutionized the way we generate genetically engineered animal models. To date, models harbouring conditional alleles (i.e. two loxP sites flanking an exon or a critical DNA sequence of interest) are amongst the most widely requested project type that are challenging to generate as they require simultaneous cleavage of the genome using two guides in order to properly integrate the repair template. An approach, using embryo sequential electroporation has been reported in the literature to successfully introduce loxP sites on the same allele. Here, we describe a modification of this sequential electroporation procedure that demonstrated the production of conditional allele mouse models for eight different genes via one of two possible strategies: either by consecutive sequential electroporation (strategy A) or non-consecutive sequential electroporation (strategy B). This latest strategy originated from using the by-product produced when using consecutive sequential electroporation (i.e. mice with a single targeted loxP site) to complete the project. RESULTS: By using strategy A, we demonstrated successful generation of conditional allele models for three different genes (Icam1, Lox, and Sar1b), with targeting efficiencies varying between 5 and 13%. By using strategy B, we generated five conditional allele models (Loxl1, Pard6a, Pard6g, Clcf1, and Mapkapk5), with targeting efficiencies varying between 3 and 25%. CONCLUSION: Our modified electroporation-based approach, involving one of the two alternative strategies, allowed the production of conditional allele models for eight different genes via two different possible paths. This reproducible method will serve as another reliable approach in addition to other well-established methodologies in the literature for conditional allele mouse model generation.


Asunto(s)
Electroporación , Alelos , Animales , Sistemas CRISPR-Cas/genética , Electroporación/métodos , Embrión de Mamíferos , Exones , Mamíferos/genética , Ratones
11.
J Neuroinflammation ; 19(1): 212, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050707

RESUMEN

BACKGROUND: Interleukin-27 (IL-27) can trigger both pro- and anti-inflammatory responses. This cytokine is elevated in the central nervous system (CNS) of multiple sclerosis (MS) patients, but how it influences neuroinflammatory processes remains unclear. As astrocytes express the receptor for IL-27, we sought to determine how these glial cells respond to this cytokine and whether such exposure alters their interactions with infiltrating activated T lymphocytes. To determine whether inflammation shapes the impact of IL-27, we compared the effects of this cytokine in non-inflamed and inflamed conditions induced by an IL-1ß exposure. MAIN BODY: Transcriptomic analysis of IL-27-exposed human astrocytes showed an upregulation of multiple immune genes. Human astrocytes increased the secretion of chemokines (CXCL9, CXCL10, and CXCL11) and the surface expression of proteins (PD-L1, HLA-E, and ICAM-1) following IL-27 exposure. To assess whether exposure of astrocytes to IL-27 influences the profile of activated T lymphocytes infiltrating the CNS, we used an astrocyte/T lymphocyte co-culture model. Activated human CD4+ or CD8+ T lymphocytes were co-cultured with astrocytes that have been either untreated or pre-exposed to IL­27 or IL-1ß. After 24 h, we analyzed T lymphocytes by flow cytometry for transcription factors and immune molecules. The contact with IL-27-exposed astrocytes increased the percentages of T-bet, Eomes, CD95, IL-18Rα, ICAM-1, and PD-L1 expressing CD4+ and CD8+ T lymphocytes and reduced the proportion of CXCR3-positive CD8+ T lymphocytes. Human CD8+ T lymphocytes co-cultured with human IL-27-treated astrocytes exhibited higher motility than when in contact with untreated astrocytes. These results suggested a preponderance of kinapse-like over synapse-like interactions between CD8+ T lymphocytes and IL-27-treated astrocytes. Finally, CD8+ T lymphocytes from MS patients showed higher motility in contact with IL-27-exposed astrocytes compared to healthy donors' cells. CONCLUSION: Our results establish that IL-27 alters the immune functions of human astrocytes and shapes the profile and motility of encountered T lymphocytes, especially CD8+ T lymphocytes from MS patients.


Asunto(s)
Interleucina-27 , Esclerosis Múltiple , Astrocitos/metabolismo , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos , Citocinas/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-27/metabolismo , Interleucinas
12.
Clin Invest Med ; 45(4): E1-10, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36586100

RESUMEN

PURPOSE: Clinician-investigators have an important role in the development and implantation of new therapies and treatment modalities; however, there have been several reports highlighting a pending shortage in the clinician-investigators' workforce. In Canada, the Royal College has promoted the development of clinician-investigators programs (CIP) to facilitate the training of these individuals. There is currently a paucity of data regarding the outcomes of such programs. This study aims to identify the strengths and areas of improvement of the Montreal University CIP.  Methods: An internet-based 51-question survey was distributed to all the alumni from the University of Montreal CIP. Participation was voluntary and no incentives were provided. The response rate was 64%.  Results: Among respondents, 50% (n=16) had completed their clinical residency and all CIP requirements. The majority of these individuals (63%) had become independent investigators and had secured provincial and national funding. Satisfaction of the respondents was high regarding the overall program (85%), the research skills developed during the CIP (84%) and the financial support obtained during the program (72%). The satisfaction rate regarding career planning was lower (63%).  Conclusion: This survey demonstrates that, while indicators are favorable, some areas still require improvement. Several steps to improve the CIP have been identified; notably, the transition from the CIP to early independent career has been identified as critical in the development of clinician-investigators and steps have been taken to improve this progression.


Asunto(s)
Investigación Biomédica , Internado y Residencia , Humanos , Investigación Biomédica/educación , Canadá , Encuestas y Cuestionarios , Investigadores/educación , Evaluación de Programas y Proyectos de Salud
13.
J Biol Chem ; 295(51): 17827-17841, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33454017

RESUMEN

In Alzheimer's disease (AD), tau, a microtubule-associated protein (MAP), becomes hyperphosphorylated, aggregates, and accumulates in the somato-dendritic compartment of neurons. In parallel to its intracellular accumulation in AD, tau is also released in the extracellular space, as revealed by its increased presence in cerebrospinal fluid (CSF). Consistent with this, recent studies, including ours, have reported that neurons secrete tau, and several therapeutic strategies aim to prevent the intracellular tau accumulation. Previously, we reported that late endosomes were implicated in tau secretion. Here, we explore the possibility of preventing intracellular tau accumulation by increasing tau secretion. Using neuronal models, we investigated whether overexpression of the vesicle-associated membrane protein 8 (VAMP8), an R-SNARE found on late endosomes, could increase tau secretion. The overexpression of VAMP8 significantly increased tau secretion, decreasing its intracellular levels in the neuroblastoma (N2a) cell line. Increased tau secretion by VAMP8 was also observed in murine hippocampal slices. The intracellular reduction of tau by VAMP8 overexpression correlated to a decrease of acetylated tubulin induced by tau overexpression in N2a cells. VAMP8 staining was preferentially found on late endosomes in N2a cells. Using total internal reflection fluorescence (TIRF) microscopy, the fusion of VAMP8-positive vesicles with the plasma membrane was correlated to the depletion of tau in the cytoplasm. Finally, overexpression of VAMP8 reduced the intracellular accumulation of tau mutants linked to frontotemporal dementia with parkinsonism and α-synuclein by increasing their secretion. Collectively, the present data indicate that VAMP8 could be used to increase tau and α-synuclein clearance to prevent their intracellular accumulation.


Asunto(s)
Proteínas R-SNARE/metabolismo , Proteínas tau/metabolismo , Acetilación , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Regulación hacia Abajo , Endosomas/metabolismo , Demencia Frontotemporal/patología , Hipocampo/metabolismo , Ratones , Microscopía Fluorescente , Mutagénesis , Neuronas/citología , Neuronas/metabolismo , Fosforilación , Proteínas R-SNARE/genética , Vesículas Secretoras/metabolismo , Tubulina (Proteína)/metabolismo , alfa-Sinucleína/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Proteínas tau/genética
14.
Mult Scler ; 27(4): 613-620, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32458728

RESUMEN

BACKGROUND: Recent progress in multiple sclerosis (MS) management has contributed to a greater life expectancy in persons with MS. Ageing with MS comes with unique challenges and bears the potential to greatly affect quality of life and socioeconomic burden. OBJECTIVES: To compare frailty in ageing persons with multiple sclerosis (pwMS) and controls; to correlate frailty with MS clinical characteristics. METHODS: PwMS and controls over 50 years old were recruited in a cross-sectional study. Two validated frailty measures were assessed: the frailty index and the Fried's phenotype. Several multiple linear regressions accounting for demographic and clinical characteristics were performed. RESULTS: Eighty pwMS (57 females, mean age 58.5 ± 6 years old) and 37 controls (24 females, mean age 61 ± 6.5 years old) were recruited. Multivariable analysis identified significantly higher frailty index in pwMS (0.21 ± 0.12 vs 0.11 ± 0.08, p < 0.0001). Similarly, according to Fried's phenotype, a significantly higher percentage of pwMS were frail compared to controls (28% vs 8%). In pwMS, frailty index was independently associated with expanded disability status scale (EDSS), comorbidities, education level and disease duration. CONCLUSION: Our results suggest that frailty can be routinely assessed in pwMS. Increased frailty in MS patients suggests that, along with MS therapeutics, a tailored multidisciplinary approach of ageing pwMS is needed.


Asunto(s)
Fragilidad , Esclerosis Múltiple , Envejecimiento , Estudios Transversales , Femenino , Fragilidad/diagnóstico , Fragilidad/epidemiología , Humanos , Persona de Mediana Edad , Calidad de Vida
15.
Mult Scler ; 27(5): 755-766, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32538713

RESUMEN

BACKGROUND: Cerebellar and brainstem symptoms are common in early stages of multiple sclerosis (MS) yet their prognostic values remain unclear. OBJECTIVE: The aim of this study was to investigate long-term disability outcomes in patients with early cerebellar and brainstem symptoms. METHODS: This study used data from MSBase registry. Patients with early cerebellar/brainstem presentations were identified as those with cerebellar/brainstem relapse(s) or functional system score ⩾ 2 in the initial 2 years. Early pyramidal presentation was chosen as a comparator. Andersen-Gill models were used to compare cumulative hazards of (1) disability progression events and (2) relapses between patients with and without early cerebellar/brainstem symptoms. Mixed effect models were used to estimate the associations between early cerebellar/brainstem presentations and expanded disability status scale (EDSS) scores. RESULTS: The study cohort consisted of 10,513 eligible patients, including 2723 and 3915 patients with early cerebellar and brainstem symptoms, respectively. Early cerebellar presentation was associated with greater hazard of progression events (HR = 1.37, p < 0.001) and EDSS (ß = 0.16, p < 0.001). Patients with early brainstem symptoms had lower hazard of progression events (HR = 0.89, p = 0.01) and EDSS (ß = -0.06, p < 0.001). Neither presentation was associated with changes in relapse risk. CONCLUSION: Early cerebellar presentation is associated with unfavourable outcomes, while early brainstem presentation is associated with favourable prognosis. These presentations may be used as MS prognostic markers and guide therapeutic approach.


Asunto(s)
Personas con Discapacidad , Esclerosis Múltiple , Tronco Encefálico , Estudios de Cohortes , Evaluación de la Discapacidad , Progresión de la Enfermedad , Humanos
16.
Epilepsia ; 62(1): 176-189, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33140401

RESUMEN

OBJECTIVE: Adult drug-resistant epilepsy (DRE) is associated with significant morbidity. Infiltration of immune cells is observed in DRE epileptic foci; however, the relation between DRE and the peripheral immune cell compartment remains only partially understood. We aimed to investigate differences in immune cell populations, cytokines, and neurodegenerative biomarkers in the peripheral blood of subjects with epilepsy versus healthy controls, and in DRE compared to well-controlled epilepsy (WCE). METHODS: Peripheral blood mononuclear cells and serum from >120 age- and sex-matched adults suffering from focal onset epilepsy and controls were analyzed by multipanel flow cytometry, multiplex immunoassays, and ultrasensitive single molecule array. RESULTS: Using a data-driven analytical approach, we identified that CD4 T cells in the peripheral blood are present in a higher proportion in DRE patients. Moreover, we observed that the frequency of CD4 T cells expressing proinflammatory cytokines interleukin (IL)-17A, IL-22, tumor necrosis factor, interferon-γ, and granulocyte-macrophage colony-stimulating factor, but not anti-inflammatory cytokines IL-10 and IL-4, is elevated in the peripheral blood of DRE subjects compared to WCE. In parallel, we found that Th17-related circulating proinflammatory cytokines are elevated, but Th2-related cytokine IL-4 is reduced, in the serum of epilepsy and DRE subjects. As Th17 cells can exert neurotoxicity, we measured levels of serum neurofilament light chain (sNfL), a marker of neuronal injury. We found significantly elevated levels of sNfL in DRE compared to controls, especially among older individuals. SIGNIFICANCE: Our data support that DRE is associated with an expansion of the CD4 Tcell subset in the peripheral blood and with a shift toward a proinflammatory Th17/Th1 CD4 Tcell immune profile. Our results further show that pathological levels of sNfL are more frequent in DRE, supporting a potential neurodegenerative component in adult DRE. With this work, we provide evidence for novel potential inflammatory and degenerative biomarkers in DRE.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Citocinas/inmunología , Epilepsia Refractaria/inmunología , Proteínas de Neurofilamentos/inmunología , Adulto , Recuento de Linfocito CD4 , Estudios de Casos y Controles , Epilepsia/tratamiento farmacológico , Epilepsia/inmunología , Femenino , Citometría de Flujo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Humanos , Inmunoensayo , Inflamación , Interferón gamma/inmunología , Interleucina-10/inmunología , Interleucina-17/inmunología , Interleucina-4/inmunología , Interleucinas/inmunología , Masculino , Persona de Mediana Edad , Imagen Individual de Molécula , Células Th17/inmunología , Células Th2/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Adulto Joven , Interleucina-22
17.
World Dev ; 139: 105260, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33658742

RESUMEN

Staple food crops tend to be low in micronutrients; therefore, individuals whose diets rely heavily on them can suffer from micronutrient deficiency. Biofortification addresses this issue through the breeding of staple crops that are micronutrient-dense and high yielding. One such crop is iron-biofortified beans. Ten iron-biofortified bean varieties were released between 2010 and 2012 in Rwanda, a country with high rates of bean production and consumption, to address iron deficiency. This study evaluates the effect of the most widely adopted of these varieties, RWR2245, on household yield, land cultivated under beans, bean consumption, purchases, and sales. Because the adoption decision could be endogenous, we use a control function approach to quantify the impacts of adoption. RWR2245 provides a yield gain of 20%-49% over traditional bush bean varieties. In our preferred model specification, we find that over a 12-month period, growing RWR2245 for at least one out of two annual growing seasons increases the length of time beans are consumed from own production by 0.64 months (19-20 days), reduces the length of time beans are purchased for consumption by 0.73 months (22-23 days), and increases the probability of selling beans by 12%. Adoption can thus improve household nutrition via two channels: primarily by increasing iron intake via substituting biofortified harvested beans for less nutrient-dense beans from the market, and additionally by increasing household income that can be spent on nutritious foods through the reduction in bean purchases and increased likelihood of selling beans. Moreover, the sale of iron-biofortified beans implies the availability of iron-dense food in markets, also benefiting households that purchase beans. These findings are promising for the continued adoption of iron-biofortified beans in Rwanda and elsewhere and provide evidence that biofortified crops are an effective investment for nutrition, food security, and poverty reduction.

18.
Brain ; 142(9): 2737-2755, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31302671

RESUMEN

Poor vitamin D status is associated with a higher relapse rate and earlier disability in multiple sclerosis. Based on these associations, patients with multiple sclerosis are frequently supplemented with the vitamin D precursor cholecalciferol, although it is unclear whether this regimen is of therapeutic benefit. To model consequences of this common practice, mice were fed for more than 3 months with a low, medium or high dose of cholecalciferol, representative of vitamin D deficiency, modest and disproportionally high supplementation, respectively, in patients with multiple sclerosis. Compared to vitamin D-deprived mice, its moderate supplementation reduced the severity of subsequent experimental autoimmune encephalomyelitis, which was associated with an expansion of regulatory T cells. Direct exposure of murine or human T cells to vitamin D metabolites inhibited their activation. In contrast, mice with 25-(OH) vitamin D levels above 200 nmol/l developed fulminant experimental autoimmune encephalomyelitis with massive CNS infiltration of activated myeloid cells, Th1 and Th17 cells. When dissecting this unexpected outcome, we observed that high, but not medium dose vitamin D had caused mild hypercalcaemia, which rendered T cells more prone to pro-inflammatory activation. Exposing murine or human T cells to equivalent calcium concentrations in vitro enhanced its influx, triggering activation, upregulation of pro-inflammatory gene products and enhanced transmigration across a blood-brain barrier model. These findings suggest that vitamin D at moderate levels may exert a direct regulatory effect, while continuous high dose vitamin D treatment could trigger multiple sclerosis disease activity by raising mean levels of T-cell excitatory calcium.


Asunto(s)
Autoinmunidad/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Subgrupos de Linfocitos T/efectos de los fármacos , Vitamina D/toxicidad , Animales , Barrera Hematoencefálica , Calcifediol/sangre , Calcio/sangre , Calcio/uso terapéutico , Calcio/toxicidad , Cloruros/sangre , Colecalciferol/efectos adversos , Colecalciferol/uso terapéutico , Relación Dosis-Respuesta a Droga , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Humanos , Hipercalcemia/inducido químicamente , Hipercalcemia/inmunología , Activación de Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/inmunología , Fosfatos/sangre , Sodio/sangre , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células Th17/efectos de los fármacos , Células Th17/inmunología , Vitamina D/sangre , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/tratamiento farmacológico , Deficiencia de Vitamina D/inmunología
19.
J Oncol Pharm Pract ; 26(6): 1538-1543, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32063105

RESUMEN

INTRODUCTION: Nivolumab is a programmed death 1 (PD-1) inhibitor approved by the Food and Drug Administration (FDA) for the treatment of eight different cancers including metastatic melanoma. Immune checkpoint blockade may lead to a range of neurologic immune-related adverse events (irAEs) with severity varying from mild to life-threatening, including encephalitis. CASE REPORT: We describe a case of a 68-year-old man who developed alteration in mental status, physical weakness and fatigue after nine cycles of nivolumab 3 mg/kg every two weeks. These symptoms were compatible with a clinical diagnosis of autoimmune limbic encephalitis, although no specific antibodies were detected and the initial MRI was normal. MANAGEMENT AND OUTCOME: The patient received intravenous methylprednisolone 1 g daily for 5 days, which was then converted to a maintenance dose of oral prednisone. The patient made a full clinical recovery but relapsed clinically upon steroid tapering, while hypersignal in the left mesial temporal suggestive of limbic encephalitis was observed on repeated MRI. DISCUSSION: Because of the prevailing usage of nivolumab in many cancer protocols, this case highlights the importance of rapidly recognising neurological impairment in patients treated with nivolumab and of initiating very high doses of corticosteroids.


Asunto(s)
Enfermedades Autoinmunes/tratamiento farmacológico , Encefalitis Límbica/tratamiento farmacológico , Metilprednisolona/administración & dosificación , Nivolumab/efectos adversos , Anciano , Enfermedades Autoinmunes/inducido químicamente , Humanos , Encefalitis Límbica/inducido químicamente , Masculino , Melanoma/tratamiento farmacológico , Nivolumab/administración & dosificación , Prednisona/uso terapéutico
20.
Proc Natl Acad Sci U S A ; 114(4): E524-E533, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28069965

RESUMEN

Activated leukocyte cell adhesion molecule (ALCAM) is a cell adhesion molecule found on blood-brain barrier endothelial cells (BBB-ECs) that was previously shown to be involved in leukocyte transmigration across the endothelium. In the present study, we found that ALCAM knockout (KO) mice developed a more severe myelin oligodendrocyte glycoprotein (MOG)35-55-induced experimental autoimmune encephalomyelitis (EAE). The exacerbated disease was associated with a significant increase in the number of CNS-infiltrating proinflammatory leukocytes compared with WT controls. Passive EAE transfer experiments suggested that the pathophysiology observed in active EAE was linked to the absence of ALCAM on BBB-ECs. In addition, phenotypic characterization of unimmunized ALCAM KO mice revealed a reduced expression of BBB junctional proteins. Further in vivo, in vitro, and molecular analysis confirmed that ALCAM is associated with tight junction molecule assembly at the BBB, explaining the increased permeability of CNS blood vessels in ALCAM KO animals. Collectively, our data point to a biologically important function of ALCAM in maintaining BBB integrity.


Asunto(s)
Molécula de Adhesión Celular del Leucocito Activado/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Células Endoteliales/metabolismo , Molécula de Adhesión Celular del Leucocito Activado/genética , Animales , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/metabolismo , Células Cultivadas , Encefalomielitis Autoinmune Experimental/patología , Femenino , Homeostasis , Ratones Endogámicos C57BL , Ratones Noqueados , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Péptidos , Índice de Severidad de la Enfermedad , Médula Espinal/metabolismo , Proteínas de Uniones Estrechas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA