Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 31(19): 3231-3244, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-35234901

RESUMEN

BACKGROUND: The endoplasmic reticulum (ER)-membrane protein complex (EMC) is a multi-protein transmembrane complex composed of 10 subunits that functions as a membrane-protein chaperone. Variants in EMC1 lead to neurodevelopmental delay and cerebellar degeneration. Multiple families with biallelic variants have been published, yet to date, only a single report of a monoallelic variant has been described, and functional evidence is sparse. METHODS: Exome sequencing was used to investigate the genetic cause underlying severe developmental delay in three unrelated children. EMC1 variants were modeled in Drosophila, using loss-of-function (LoF) and overexpression studies. Glial-specific and neuronal-specific assays were used to determine whether the dysfunction was specific to one cell type. RESULTS: Exome sequencing identified de novo variants in EMC1 in three individuals affected by global developmental delay, hypotonia, seizures, visual impairment and cerebellar atrophy. All variants were located at Pro582 or Pro584. Drosophila studies indicated that imbalance of EMC1-either overexpression or knockdown-results in pupal lethality and suggest that the tested homologous variants are LoF alleles. In addition, glia-specific gene dosage, overexpression or knockdown, of EMC1 led to lethality, whereas neuron-specific alterations were tolerated. DISCUSSION: We establish de novo monoallelic EMC1 variants as causative of a neurological disease trait by providing functional evidence in a Drosophila model. The identified variants failed to rescue the lethality of a null allele. Variations in dosage of the wild-type EMC1, specifically in glia, lead to pupal lethality, which we hypothesize results from the altered stoichiometry of the multi-subunit protein complex EMC.


Asunto(s)
Enfermedades Cerebelosas , Proteínas de Drosophila , Discapacidad Intelectual , Malformaciones del Sistema Nervioso , Enfermedades Neurodegenerativas , Trastornos del Neurodesarrollo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Enfermedades Cerebelosas/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de la Membrana/genética , Trastornos del Neurodesarrollo/genética , Neuroglía , Proteínas Represoras
2.
Mol Genet Metab ; 142(4): 108513, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38917675

RESUMEN

INTRODUCTION: Congenital disorders of glycosylation (CDG) are a continuously expanding group of monogenic disorders that disrupt glycoprotein and glycolipid biosynthesis, leading to multi-systemic manifestations. These disorders are categorized into various groups depending on which part of the glycosylation process is impaired. The cardiac manifestations in CDG can significantly differ, not only across different types but also among individuals with the same genetic cause of CDG. Cardiomyopathy is an important phenotype in CDG. The clinical manifestations and progression of cardiomyopathy in CDG patients have not been well characterized. This study aims to delineate common patterns of cardiomyopathy across a range of genetic causes of CDG and to propose baseline screening and follow-up evaluation for this patient population. METHODS: Patients with molecular confirmation of CDG who were enrolled in the prospective or memorial arms of the Frontiers in Congenital Disorders of Glycosylation Consortium (FCDGC) natural history study were ascertained for the presence of cardiomyopathy based on a retrospective review of their medical records. All patients were evaluated by clinical geneticists who are members of FCDGC at their respective academic centers. Patients were screened for cardiomyopathy, and detailed data were retrospectively collected. We analyzed their clinical and molecular history, imaging characteristics of cardiac involvement, type of cardiomyopathy, age at initial presentation of cardiomyopathy, additional cardiac features, the treatments administered, and their clinical outcomes. RESULTS: Of the 305 patients with molecularly confirmed CDG participating in the FCDGC natural history study as of June 2023, 17 individuals, nine females and eight males, were identified with concurrent diagnoses of cardiomyopathy. Most of these patients were diagnosed with PMM2-CDG (n = 10). However, cardiomyopathy was also observed in other diagnoses, including PGM1-CDG (n = 3), ALG3-CDG (n = 1), DPM1-CDG (n = 1), DPAGT1-CDG (n = 1), and SSR4-CDG (n = 1). All PMM2-CDG patients were reported to have hypertrophic cardiomyopathy. Dilated cardiomyopathy was observed in three patients, two with PGM1-CDG and one with ALG3-CDG; left ventricular non-compaction cardiomyopathy was diagnosed in two patients, one with PGM1-CDG and one with DPAGT1-CDG; two patients, one with DPM1-CDG and one with SSR4-CDG, were diagnosed with non-ischemic cardiomyopathy. The estimated median age of diagnosis for cardiomyopathy was 5 months (range: prenatal-27 years). Cardiac improvement was observed in three patients with PMM2-CDG. Five patients showed a progressive course of cardiomyopathy, while the condition remained unchanged in eight individuals. Six patients demonstrated pericardial effusion, with three patients exhibiting cardiac tamponade. One patient with SSR4-CDG has been recently diagnosed with cardiomyopathy; thus, the progression of the disease is yet to be determined. One patient with PGM1-CDG underwent cardiac transplantation. Seven patients were deceased, including five with PMM2-CDG, one with DPAGT1-CDG, and one with ALG3-CDG. Two patients died of cardiac tamponade from pericardial effusion; for the remaining patients, cardiomyopathy was not necessarily the primary cause of death. CONCLUSIONS: In this retrospective study, cardiomyopathy was identified in ∼6% of patients with CDG. Notably, the majority, including all those with PMM2-CDG, exhibited hypertrophic cardiomyopathy. Some cases did not show progression, yet pericardial effusions were commonly observed, especially in PMM2-CDG patients, occasionally escalating to life-threatening cardiac tamponade. It is recommended that clinicians managing CDG patients, particularly those with PMM2-CDG and PGM1-CDG, be vigilant of the cardiomyopathy risk and risk for potentially life-threatening pericardial effusions. Cardiac surveillance, including an echocardiogram and EKG, should be conducted at the time of diagnosis, annually throughout the first 5 years, followed by check-ups every 2-3 years if no concerns arise until adulthood. Subsequently, routine cardiac examinations every five years are advisable. Additionally, patients with diagnosed cardiomyopathy should receive ongoing cardiac care to ensure the effective management and monitoring of their condition. A prospective study will be required to determine the true prevalence of cardiomyopathy in CDG.

3.
Mol Genet Metab ; 142(4): 108509, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38959600

RESUMEN

OBJECTIVE: Our report describes clinical, genetic, and biochemical features of participants with a molecularly confirmed congenital disorder of glycosylation (CDG) enrolled in the Frontiers in Congenital Disorders of Glycosylation (FCDGC) Natural History cohort at year 5 of the study. METHODS: We enrolled individuals with a known or suspected CDG into the FCDGC Natural History Study, a multicenter prospective and retrospective natural history study of all genetic causes of CDG. We conducted a cross-sectional analysis of baseline study visit data from participants with confirmed CDG who were consented into the FCDGC Natural History Study (5U54NS115198) from October 2019 to November 2023. RESULTS: Three hundred thirty-three subjects consented to the FCDGC Natural History Study. Of these, 280 unique individuals had genetic data available that was consistent with a diagnosis of CDG. These 280 individuals were enrolled into the study between October 8, 2019 and November 29, 2023. One hundred forty-one (50.4%) were female, and 139 (49.6%) were male. Mean and median age at enrollment was 10.1 and 6.5 years, respectively, with a range of 0.22 to 71.4 years. The cohort encompassed individuals with disorders of N-linked protein glycosylation (57%), glycosylphosphatidylinositol anchor disorder (GPI anchor) (15%), disorders of Golgi homeostasis, trafficking and transport (12%), dolichol metabolism disorders (5%), disorders of multiple pathways (6%), and other (5%). The most frequent presenting symptom(s) leading to diagnosis were developmental delay/disability (77%), followed by hypotonia (56%) and feeding difficulties (42%). Mean and median time between first related symptom and diagnosis was 2.7 and 0.8 years, respectively. One hundred percent of individuals in our cohort had developmental differences/disabilities at the time of their baseline visit, followed by 97% with neurologic involvement, 91% with gastrointestinal (GI)/liver involvement, and 88% with musculoskeletal involvement. Severity of disease in individuals was scored on the Nijmegen Progression CDG Rating Scale (NPCRS) with 27% of scores categorized as mild, 44% moderate, and 29% severe. Of the individuals with N-linked protein glycosylation defects, 83% of those with data showed a type 1 pattern on carbohydrate deficient transferrin (CDT) analysis including 82/84 individuals with PMM2-CDG, 6% a type 2 pattern, 1% both type 1 and type 2 pattern and 10% a normal or nonspecific pattern. One hundred percent of individuals with Golgi homeostasis and trafficking defects with data showed a type 2 pattern on CDT analysis, while Golgi transport defect showed a type II pattern 73% of the time, a type 1 pattern for 7%, and 20% had a normal or nonspecific pattern. Most of the variants documented were classified as pathogenic or likely pathogenic using ACMG criteria. For the majority of the variants, the predicted molecular consequence was missense followed by nonsense and splice site, and the majority of the diagnoses are inherited in an autosomal recessive pattern but with disorders of all major nuclear inheritance included. DISCUSSION: The FCDGC Natural History Study serves as an important resource to build future research studies, improve clinical care, and prepare for clinical trial readiness. Herein is the first overview of CDG participants of the FCDGC Natural History Study.

4.
Am J Med Genet A ; 194(5): e63516, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38168088

RESUMEN

The NFIX gene encodes a DNA-binding protein belonging to the nuclear factor one (NFI) family of transcription factors. Pathogenic variants of NFIX are associated with two autosomal dominant Mendelian disorders, Malan syndrome (MIM 614753) and Marshall-Smith syndrome (MIM 602535), which are clinically distinct due to different disease-causing mechanisms. NFIX variants associated with Malan syndrome are missense variants mostly located in exon 2 encoding the N-terminal DNA binding and dimerization domain or are protein-truncating variants that trigger nonsense-mediated mRNA decay (NMD) resulting in NFIX haploinsufficiency. NFIX variants associated with Marshall-Smith syndrome are protein-truncating and are clustered between exons 6 and 10, including a recurrent Alu-mediated deletion of exons 6 and 7, which can escape NMD. The more severe phenotype of Marshall-Smith syndrome is likely due to a dominant-negative effect of these protein-truncating variants that escape NMD. Here, we report a child with clinical features of Malan syndrome who has a de novo NFIX intragenic duplication. Using genome sequencing, exon-level microarray analysis, and RNA sequencing, we show that this duplication encompasses exons 6 and 7 and leads to NFIX haploinsufficiency. To our knowledge, this is the first reported case of Malan Syndrome caused by an intragenic NFIX duplication.


Asunto(s)
Anomalías Múltiples , Enfermedades del Desarrollo Óseo , Anomalías Craneofaciales , Discapacidad Intelectual , Megalencefalia , Displasia Septo-Óptica , Síndrome de Sotos , Niño , Humanos , Factores de Transcripción NFI/genética , Síndrome de Sotos/genética , Exones/genética , Megalencefalia/genética , Discapacidad Intelectual/genética , Análisis de Secuencia de ARN
5.
Am J Hum Genet ; 107(1): 164-172, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32553196

RESUMEN

CNOT1 is a member of the CCR4-NOT complex, which is a master regulator, orchestrating gene expression, RNA deadenylation, and protein ubiquitination. We report on 39 individuals with heterozygous de novo CNOT1 variants, including missense, splice site, and nonsense variants, who present with a clinical spectrum of intellectual disability, motor delay, speech delay, seizures, hypotonia, and behavioral problems. To link CNOT1 dysfunction to the neurodevelopmental phenotype observed, we generated variant-specific Drosophila models, which showed learning and memory defects upon CNOT1 knockdown. Introduction of human wild-type CNOT1 was able to rescue this phenotype, whereas mutants could not or only partially, supporting our hypothesis that CNOT1 impairment results in neurodevelopmental delay. Furthermore, the genetic interaction with autism-spectrum genes, such as ASH1L, DYRK1A, MED13, and SHANK3, was impaired in our Drosophila models. Molecular characterization of CNOT1 variants revealed normal CNOT1 expression levels, with both mutant and wild-type alleles expressed at similar levels. Analysis of protein-protein interactions with other members indicated that the CCR4-NOT complex remained intact. An integrated omics approach of patient-derived genomics and transcriptomics data suggested only minimal effects on endonucleolytic nonsense-mediated mRNA decay components, suggesting that de novo CNOT1 variants are likely haploinsufficient hypomorph or neomorph, rather than dominant negative. In summary, we provide strong evidence that de novo CNOT1 variants cause neurodevelopmental delay with a wide range of additional co-morbidities. Whereas the underlying pathophysiological mechanism warrants further analysis, our data demonstrate an essential and central role of the CCR4-NOT complex in human brain development.


Asunto(s)
Discapacidades del Desarrollo/genética , Expresión Génica/genética , Trastornos del Neurodesarrollo/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , ARN/genética , Receptores CCR4/genética , Factores de Transcripción/genética , Alelos , Femenino , Variación Genética/genética , Haploinsuficiencia/genética , Heterocigoto , Humanos , Masculino , Malformaciones del Sistema Nervioso/genética , Fenotipo , Estabilidad Proteica
6.
Genet Med ; 25(9): 100894, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37183800

RESUMEN

PURPOSE: The "NALCN channelosome" is an ion channel complex that consists of multiple proteins, including NALCN, UNC79, UNC80, and FAM155A. Only a small number of individuals with a neurodevelopmental syndrome have been reported with disease causing variants in NALCN and UNC80. However, no pathogenic UNC79 variants have been reported, and in vivo function of UNC79 in humans is largely unknown. METHODS: We used international gene-matching efforts to identify patients harboring ultrarare heterozygous loss-of-function UNC79 variants and no other putative responsible genes. We used genetic manipulations in Drosophila and mice to test potential causal relationships between UNC79 variants and the pathology. RESULTS: We found 6 unrelated and affected patients with UNC79 variants. Five patients presented with overlapping neurodevelopmental features, including mild to moderate intellectual disability and a mild developmental delay, whereas a single patient reportedly had normal cognitive and motor development but was diagnosed with epilepsy and autistic features. All displayed behavioral issues and 4 patients had epilepsy. Drosophila with UNC79 knocked down displayed induced seizure-like phenotype. Mice with a heterozygous loss-of-function variant have a developmental delay in body weight compared with wild type. In addition, they have impaired ability in learning and memory. CONCLUSION: Our results demonstrate that heterozygous loss-of-function UNC79 variants are associated with neurologic pathologies.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Proteínas de la Membrana , Trastornos del Neurodesarrollo , Animales , Humanos , Ratones , Drosophila/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Trastornos del Neurodesarrollo/genética , Fenotipo , Proteínas de la Membrana/genética
7.
Mol Genet Metab ; 140(3): 107688, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37647829

RESUMEN

Biallelic pathogenic variants in PGAP3 cause a rare glycosylphosphatidyl-inositol biogenesis disorder, PGAP3-CDG. This multisystem condition presents with a predominantly neurological phenotype, including developmental delay, intellectual disability, seizures, and hyperphosphatemia. Here, we summarized the phenotype of sixty-five individuals including six unreported individuals from our CDG natural history study with a confirmed PGAP3-CDG diagnosis. Common additional features found in this disorder included brain malformations, behavioral abnormalities, cleft palate, and characteristic facial features. This report aims to review the genetic and metabolic findings and characterize the disease's phenotype while highlighting the necessary clinical approach to improve the management of this rare CDG.


Asunto(s)
Anomalías Múltiples , Trastornos Congénitos de Glicosilación , Discapacidad Intelectual , Humanos , Anomalías Múltiples/genética , Glicosilación , Fenotipo , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Convulsiones , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/diagnóstico , Hidrolasas de Éster Carboxílico/genética , Receptores de Superficie Celular/genética
8.
Am J Med Genet A ; 191(4): 930-940, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36651673

RESUMEN

Increasing use of unbiased genomic sequencing in critically ill infants can expand understanding of rare diseases such as Kabuki syndrome (KS). Infants diagnosed with KS through genome-wide sequencing performed during the initial hospitalization underwent retrospective review of medical records. Human phenotype ontology terms used in genomic analysis were aggregated and analyzed. Clinicians were surveyed regarding changes in management and other care changes. Fifteen infants met inclusion criteria. KS was not suspected prior to genomic sequencing. Variants were classified as Pathogenic (n = 10) or Likely Pathogenic (n = 5) by American College of Medical Genetics and Genomics Guidelines. Fourteen variants were de novo (KMT2D, n = 12, KDM6A, n = 2). One infant inherited a likely pathogenic variant in KMT2D from an affected father. Frequent findings involved cardiovascular (14/15) and renal (7/15) systems, with palatal defects also identified (6/15). Three infants had non-immune hydrops. No minor anomalies were universally documented; ear anomalies, micrognathia, redundant nuchal skin, and hypoplastic nails were common. Changes in management were reported in 14 infants. Early use of unbiased genome-wide sequencing enabled a molecular diagnosis prior to clinical recognition including infants with atypical or rarely reported features of KS while also expanding the phenotypic spectrum of this rare disorder.


Asunto(s)
Anomalías Múltiples , Enfermedades Hematológicas , Enfermedades Vestibulares , Embarazo , Femenino , Humanos , Lactante , Anomalías Múltiples/genética , Cara/anomalías , Enfermedades Hematológicas/genética , Enfermedades Vestibulares/genética , Fenotipo , Histona Demetilasas/genética
9.
Prenat Diagn ; 43(4): 544-552, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36759743

RESUMEN

INTRODUCTION: Whole exome sequencing (WES) has increasingly become integrated into prenatal care and genetic testing pathways. Current studies of prenatal WES have focused on diagnostic yield. The possibility of obtaining a variant of uncertain significance and lack of provider expertise are frequently described as common barriers to clinical integration of prenatal WES. We describe the implementation and workflow for a multidisciplinary approach to effectively integrate prenatal WES into maternal-fetal care to overcome these barriers. METHODS: A multidisciplinary team reviews and approves potential cases for WES. This team reviews WES results, reclassifying variants as appropriate and provides recommendations for postnatal care. A detailed description of this workflow is provided, and a case example is included to demonstrate effectiveness of this approach. Our team has approved 62 cases for WES with 45 patients ultimately pursuing WES. We have achieved a diagnostic yield of 40% and the multidisciplinary team has played a role in variant interpretation in 50% of the reported variants of uncertain significance. CONCLUSIONS: This approach facilitates communication between prenatal and postnatal care teams and provides accurate interpretation and recommendations for identified fetal variants. This model can be replicated to ensure appropriate patient care and effective integration of novel genomic technologies into prenatal settings.


Asunto(s)
Feto , Atención Prenatal , Embarazo , Femenino , Humanos , Secuenciación del Exoma , Flujo de Trabajo , Pruebas Genéticas
10.
Hum Mutat ; 43(2): 266-282, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34859529

RESUMEN

De novo variants in QRICH1 (Glutamine-rich protein 1) has recently been reported in 11 individuals with intellectual disability (ID). The function of QRICH1 is largely unknown but it is likely to play a key role in the unfolded response of endoplasmic reticulum stress through transcriptional control of proteostasis. In this study, we present 27 additional individuals and delineate the clinical and molecular spectrum of the individuals (n = 38) with QRICH1 variants. The main clinical features were mild to moderate developmental delay/ID (71%), nonspecific facial dysmorphism (92%) and hypotonia (39%). Additional findings included poor weight gain (29%), short stature (29%), autism spectrum disorder (29%), seizures (24%) and scoliosis (18%). Minor structural brain abnormalities were reported in 52% of the individuals with brain imaging. Truncating or splice variants were found in 28 individuals and 10 had missense variants. Four variants were inherited from mildly affected parents. This study confirms that heterozygous QRICH1 variants cause a neurodevelopmental disorder including short stature and expands the phenotypic spectrum to include poor weight gain, scoliosis, hypotonia, minor structural brain anomalies, and seizures. Inherited variants from mildly affected parents are reported for the first time, suggesting variable expressivity.


Asunto(s)
Trastorno del Espectro Autista , Enanismo , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Escoliosis , Trastorno del Espectro Autista/genética , Humanos , Discapacidad Intelectual/genética , Hipotonía Muscular , Trastornos del Neurodesarrollo/genética , Convulsiones , Aumento de Peso
11.
Hum Genet ; 141(1): 65-80, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34748075

RESUMEN

Pathogenic variants of the myelin transcription factor-1 like (MYT1L) gene include heterozygous missense, truncating variants and 2p25.3 microdeletions and cause a syndromic neurodevelopmental disorder (OMIM#616,521). Despite enrichment in de novo mutations in several developmental disorders and autism studies, the data on clinical characteristics and genotype-phenotype correlations are scarce, with only 22 patients with single nucleotide pathogenic variants reported. We aimed to further characterize this disorder at both the clinical and molecular levels by gathering a large series of patients with MYT1L-associated neurodevelopmental disorder. We collected genetic information on 40 unreported patients with likely pathogenic/pathogenic MYT1L variants and performed a comprehensive review of published data (total = 62 patients). We confirm that the main phenotypic features of the MYT1L-related disorder are developmental delay with language delay (95%), intellectual disability (ID, 70%), overweight or obesity (58%), behavioral disorders (98%) and epilepsy (23%). We highlight novel clinical characteristics, such as learning disabilities without ID (30%) and feeding difficulties during infancy (18%). We further describe the varied dysmorphic features (67%) and present the changes in weight over time of 27 patients. We show that patients harboring highly clustered missense variants in the 2-3-ZNF domains are not clinically distinguishable from patients with truncating variants. We provide an updated overview of clinical and genetic data of the MYT1L-associated neurodevelopmental disorder, hence improving diagnosis and clinical management of these patients.


Asunto(s)
Variación Genética , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Adolescente , Adulto , Niño , Preescolar , Epilepsia/genética , Trastornos de Alimentación y de la Ingestión de Alimentos/genética , Femenino , Estudios de Asociación Genética , Heterocigoto , Humanos , Lactante , Trastornos del Desarrollo del Lenguaje/genética , Masculino , Obesidad/genética , Fenotipo , Adulto Joven
12.
Am J Hum Genet ; 104(6): 1127-1138, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31155284

RESUMEN

Optimal lysosome function requires maintenance of an acidic pH maintained by proton pumps in combination with a counterion transporter such as the Cl-/H+ exchanger, CLCN7 (ClC-7), encoded by CLCN7. The role of ClC-7 in maintaining lysosomal pH has been controversial. In this paper, we performed clinical and genetic evaluations of two children of different ethnicities. Both children had delayed myelination and development, organomegaly, and hypopigmentation, but neither had osteopetrosis. Whole-exome and -genome sequencing revealed a de novo c.2144A>G variant in CLCN7 in both affected children. This p.Tyr715Cys variant, located in the C-terminal domain of ClC-7, resulted in increased outward currents when it was heterologously expressed in Xenopus oocytes. Fibroblasts from probands displayed a lysosomal pH approximately 0.2 units lower than that of control cells, and treatment with chloroquine normalized the pH. Primary fibroblasts from both probands also exhibited markedly enlarged intracellular vacuoles; this finding was recapitulated by the overexpression of human p.Tyr715Cys CLCN7 in control fibroblasts, reflecting the dominant, gain-of-function nature of the variant. A mouse harboring the knock-in Clcn7 variant exhibited hypopigmentation, hepatomegaly resulting from abnormal storage, and enlarged vacuoles in cultured fibroblasts. Our results show that p.Tyr715Cys is a gain-of-function CLCN7 variant associated with developmental delay, organomegaly, and hypopigmentation resulting from lysosomal hyperacidity, abnormal storage, and enlarged intracellular vacuoles. Our data supports the hypothesis that the ClC-7 antiporter plays a critical role in maintaining lysosomal pH.


Asunto(s)
Ácidos/química , Albinismo/etiología , Canales de Cloruro/genética , Fibroblastos/patología , Variación Genética , Enfermedades por Almacenamiento Lisosomal/etiología , Lisosomas/metabolismo , Albinismo/metabolismo , Albinismo/patología , Animales , Canales de Cloruro/fisiología , Femenino , Fibroblastos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Lactante , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/patología , Masculino , Ratones , Oocitos/metabolismo , Xenopus laevis
13.
Am J Hum Genet ; 105(3): 493-508, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31447100

RESUMEN

Histones mediate dynamic packaging of nuclear DNA in chromatin, a process that is precisely controlled to guarantee efficient compaction of the genome and proper chromosomal segregation during cell division and to accomplish DNA replication, transcription, and repair. Due to the important structural and regulatory roles played by histones, it is not surprising that histone functional dysregulation or aberrant levels of histones can have severe consequences for multiple cellular processes and ultimately might affect development or contribute to cell transformation. Recently, germline frameshift mutations involving the C-terminal tail of HIST1H1E, which is a widely expressed member of the linker histone family and facilitates higher-order chromatin folding, have been causally linked to an as-yet poorly defined syndrome that includes intellectual disability. We report that these mutations result in stable proteins that reside in the nucleus, bind to chromatin, disrupt proper compaction of DNA, and are associated with a specific methylation pattern. Cells expressing these mutant proteins have a dramatically reduced proliferation rate and competence, hardly enter into the S phase, and undergo accelerated senescence. Remarkably, clinical assessment of a relatively large cohort of subjects sharing these mutations revealed a premature aging phenotype as a previously unrecognized feature of the disorder. Our findings identify a direct link between aberrant chromatin remodeling, cellular senescence, and accelerated aging.


Asunto(s)
Senescencia Celular/fisiología , Histonas/fisiología , Aneuploidia , Nucléolo Celular/metabolismo , Niño , Cromatina/metabolismo , Metilación de ADN , Femenino , Histonas/química , Humanos , Lactante , Masculino , Persona de Mediana Edad
14.
N Engl J Med ; 381(17): 1644-1652, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31597037

RESUMEN

Genome sequencing is often pivotal in the diagnosis of rare diseases, but many of these conditions lack specific treatments. We describe how molecular diagnosis of a rare, fatal neurodegenerative condition led to the rational design, testing, and manufacture of milasen, a splice-modulating antisense oligonucleotide drug tailored to a particular patient. Proof-of-concept experiments in cell lines from the patient served as the basis for launching an "N-of-1" study of milasen within 1 year after first contact with the patient. There were no serious adverse events, and treatment was associated with objective reduction in seizures (determined by electroencephalography and parental reporting). This study offers a possible template for the rapid development of patient-customized treatments. (Funded by Mila's Miracle Foundation and others.).


Asunto(s)
Proteínas de Transporte de Membrana/genética , Mutagénesis Insercional , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Lipofuscinosis Ceroideas Neuronales/genética , Oligonucleótidos Antisentido/uso terapéutico , Medicina de Precisión , Enfermedades Raras/tratamiento farmacológico , Biopsia , Niño , Desarrollo Infantil , Descubrimiento de Drogas , Drogas en Investigación/uso terapéutico , Electroencefalografía , Femenino , Humanos , Pruebas Neuropsicológicas , ARN Mensajero , Convulsiones/diagnóstico , Convulsiones/tratamiento farmacológico , Piel/patología , Secuenciación Completa del Genoma
15.
Clin Genet ; 102(2): 117-122, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35470444

RESUMEN

BRD4 is part of a multiprotein complex involved in loading the cohesin complex onto DNA, a fundamental process required for cohesin-mediated loop extrusion and formation of Topologically Associating Domains. Pathogenic variations in this complex have been associated with a growing number of syndromes, collectively known as cohesinopathies, the most classic being Cornelia de Lange syndrome. However, no cohort study has been conducted to delineate the clinical and molecular spectrum of BRD4-related disorder. We formed an international collaborative study, and collected 14 new patients, including two fetuses. We performed phenotype and genotype analysis, integrated prenatal findings from fetopathological examinations, phenotypes of pediatric patients and adults. We report the first cohort of patients with BRD4-related disorder and delineate the dysmorphic features at different ages. This work extends the phenotypic spectrum of cohesinopathies and characterize a new clinically relevant and recognizable pattern, distinguishable from the other cohesinopathies.


Asunto(s)
Síndrome de Cornelia de Lange , Proteínas Nucleares , Proteínas de Ciclo Celular/genética , Niño , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/patología , Femenino , Genómica , Humanos , Mutación , Proteínas Nucleares/genética , Fenotipo , Embarazo , Factores de Transcripción/genética
16.
Ann Neurol ; 90(6): 887-900, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34652821

RESUMEN

OBJECTIVE: Epalrestat, an aldose reductase inhibitor increases phosphomannomutase (PMM) enzyme activity in a PMM2-congenital disorders of glycosylation (CDG) worm model. Epalrestat also decreases sorbitol level in diabetic neuropathy. We evaluated the genetic, biochemical, and clinical characteristics, including the Nijmegen Progression CDG Rating Scale (NPCRS), urine polyol levels and fibroblast glycoproteomics in patients with PMM2-CDG. METHODS: We performed PMM enzyme measurements, multiplexed proteomics, and glycoproteomics in PMM2-deficient fibroblasts before and after epalrestat treatment. Safety and efficacy of 0.8 mg/kg/day oral epalrestat were studied in a child with PMM2-CDG for 12 months. RESULTS: PMM enzyme activity increased post-epalrestat treatment. Compared with controls, 24% of glycopeptides had reduced abundance in PMM2-deficient fibroblasts, 46% of which improved upon treatment. Total protein N-glycosylation improved upon epalrestat treatment bringing overall glycosylation toward the control fibroblasts' glycosylation profile. Sorbitol levels were increased in the urine of 74% of patients with PMM2-CDG and correlated with the presence of peripheral neuropathy, and CDG severity rating scale. In the child with PMM2-CDG on epalrestat treatment, ataxia scores improved together with significant growth improvement. Urinary sorbitol levels nearly normalized in 3 months and blood transferrin glycosylation normalized in 6 months. INTERPRETATION: Epalrestat improved PMM enzyme activity, N-glycosylation, and glycosylation biomarkers in vitro. Leveraging cellular glycoproteome assessment, we provided a systems-level view of treatment efficacy and discovered potential novel biosignatures of therapy response. Epalrestat was well-tolerated and led to significant clinical improvements in the first pediatric patient with PMM2-CDG treated with epalrestat. We also propose urinary sorbitol as a novel biomarker for disease severity and treatment response in future clinical trials in PMM2-CDG. ANN NEUROL 20219999:n/a-n/a.


Asunto(s)
Trastornos Congénitos de Glicosilación/diagnóstico , Inhibidores Enzimáticos/uso terapéutico , Fosfotransferasas (Fosfomutasas)/deficiencia , Rodanina/análogos & derivados , Sorbitol/orina , Tiazolidinas/uso terapéutico , Adolescente , Adulto , Anciano , Biomarcadores/orina , Niño , Preescolar , Trastornos Congénitos de Glicosilación/tratamiento farmacológico , Trastornos Congénitos de Glicosilación/orina , Femenino , Glicosilación , Humanos , Lactante , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Fosfotransferasas (Fosfomutasas)/orina , Pronóstico , Rodanina/uso terapéutico , Adulto Joven
17.
Am J Med Genet A ; 188(6): 1739-1745, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35224839

RESUMEN

Heterozygous de novo missense pathogenic variants in PTDSS1 that result in gain-of-function of phosphatidylserine synthase 1 are associated with Lenz-Majewski hyperostotic dwarfism (LMHD). We identified the novel heterozygous de novo variant p.(Leu137Phe) in PTDSS1 in a child with mild-to-moderate developmental delay. Skeletal survey revealed no evidence of LMHD in this patient. Functional assessment of the p.Leu137Phe variant was performed by overexpressing the mutant protein into HEK293 cells. Following C14 -serine labeling and TLC analysis of lipids, we observed that the p.(Leu137Phe) variant displayed no catalytic activity compared to the wild-type enzyme. We conclude that p.(Leu137Phe) variant has decreased enzymatic activity and that is likely to be the etiology of the patient's symptoms given the gene's constraint in the population. This is the first report of the clinical phenotype seen in an individual with a heterozygous loss-of-function variant in PTDSS1. This phenotype is distinct from LMHD, which results from gain-of-function pathogenic variants in the same gene. Evaluation of the neurodevelopmental phenotype of additional individuals with loss-of-function variants in PTDSS1 is indicated to determine the spectrum of associated phenotypes.


Asunto(s)
Anomalías Múltiples , Enfermedades del Desarrollo Óseo , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Anomalías Múltiples/genética , Enfermedades del Desarrollo Óseo/genética , Células HEK293 , Humanos , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Fenotipo
18.
J Inherit Metab Dis ; 45(2): 157-168, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34625984

RESUMEN

Methionine synthase deficiency (cblG complementation group) is a rare inborn error of metabolism affecting the homocysteine re-methylation pathway. It leads to a biochemical phenotype of hyperhomocysteinemia and hypomethioninemia. The clinical presentation of cblG is variable, ranging from seizures, encephalopathy, macrocytic anemia, hypotonia, and feeding difficulties in the neonatal period to onset of psychiatric symptoms or acute neurologic changes in adolescence or adulthood. Given the variable and nonspecific symptoms seen in cblG, the diagnosis of affected patients is often delayed. Medical management of cblG includes the use of hydroxocobalamin, betaine, folinic acid, and in some cases methionine supplementation. Treatment has been shown to lead to improvement in the biochemical profile of affected patients, with lowering of total homocysteine levels and increasing methionine levels. However, the published literature contains differing conclusions on whether treatment is effective in changing the natural history of the disease. Herein, we present five patients with cblG who have shown substantial clinical benefit from treatment with objective improvement in their neurologic outcomes. We demonstrate more favorable outcomes in our patients who were treated early in life, especially those who were treated before neurologic symptoms manifested. Given improved outcomes from treatment of presymptomatic patients, cblG warrants inclusion in newborn screening.


Asunto(s)
Metionina , Vitamina B 12 , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/deficiencia , Adulto , Errores Innatos del Metabolismo de los Aminoácidos , Diagnóstico Precoz , Homocisteína , Humanos , Errores Innatos del Metabolismo , Vitamina B 12/metabolismo
19.
Am J Hum Genet ; 102(4): 557-573, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29576218

RESUMEN

Mitochondrial disorders causing neurodegeneration in childhood are genetically heterogeneous, and the underlying genetic etiology remains unknown in many affected individuals. We identified biallelic variants in PMPCB in individuals of four families including one family with two affected siblings with neurodegeneration and cerebellar atrophy. PMPCB encodes the catalytic subunit of the essential mitochondrial processing protease (MPP), which is required for maturation of the majority of mitochondrial precursor proteins. Mitochondria isolated from two fibroblast cell lines and induced pluripotent stem cells derived from one affected individual and differentiated neuroepithelial stem cells showed reduced PMPCB levels and accumulation of the processing intermediate of frataxin, a sensitive substrate for MPP dysfunction. Introduction of the identified PMPCB variants into the homologous S. cerevisiae Mas1 protein resulted in a severe growth and MPP processing defect leading to the accumulation of mitochondrial precursor proteins and early impairment of the biogenesis of iron-sulfur clusters, which are indispensable for a broad range of crucial cellular functions. Analysis of biopsy materials of an affected individual revealed changes and decreased activity in iron-sulfur cluster-containing respiratory chain complexes and dysfunction of mitochondrial and cytosolic Fe-S cluster-dependent enzymes. We conclude that biallelic mutations in PMPCB cause defects in MPP proteolytic activity leading to dysregulation of iron-sulfur cluster biogenesis and triggering a complex neurological phenotype of neurodegeneration in early childhood.


Asunto(s)
Dominio Catalítico/genética , Metaloendopeptidasas/genética , Mutación/genética , Degeneración Nerviosa/genética , Niño , Preescolar , Dermis/patología , Transporte de Electrón , Femenino , Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Hierro-Azufre/genética , Imagen por Resonancia Magnética , Masculino , Mitocondrias/metabolismo , Linaje , Proto-Oncogenes Mas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Peptidasa de Procesamiento Mitocondrial
20.
Genet Med ; 23(8): 1474-1483, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33941880

RESUMEN

PURPOSE: Despite a few recent reports of patients harboring truncating variants in NSD2, a gene considered critical for the Wolf-Hirschhorn syndrome (WHS) phenotype, the clinical spectrum associated with NSD2 pathogenic variants remains poorly understood. METHODS: We collected a comprehensive series of 18 unpublished patients carrying heterozygous missense, elongating, or truncating NSD2 variants; compared their clinical data to the typical WHS phenotype after pooling them with ten previously described patients; and assessed the underlying molecular mechanism by structural modeling and measuring methylation activity in vitro. RESULTS: The core NSD2-associated phenotype includes mostly mild developmental delay, prenatal-onset growth retardation, low body mass index, and characteristic facial features distinct from WHS. Patients carrying missense variants were significantly taller and had more frequent behavioral/psychological issues compared with those harboring truncating variants. Structural in silico modeling suggested interference with NSD2's folding and function for all missense variants in known structures. In vitro testing showed reduced methylation activity and failure to reconstitute H3K36me2 in NSD2 knockout cells for most missense variants. CONCLUSION: NSD2 loss-of-function variants lead to a distinct, rather mild phenotype partially overlapping with WHS. To avoid confusion for patients, NSD2 deficiency may be named Rauch-Steindl syndrome after the delineators of this phenotype.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Síndrome de Wolf-Hirschhorn , Femenino , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Metilación , Mutación Missense , Fenotipo , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA