Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
NMR Biomed ; : e4950, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37046414

RESUMEN

Even at 7 T, cardiac 31 P magnetic resonance spectroscopic imaging (MRSI) is fundamentally limited by low signal-to-noise ratio (SNR), leading to long scan times and poor temporal and spatial resolutions. Compartment-based reconstruction algorithms such as magnetic resonance spectroscopy with linear algebraic modeling (SLAM) and spectral localization by imaging (SLIM) may improve SNR or reduce scan time without changes to acquisition. Here, we compare the repeatability and SNR performance of these compartment-based methods, applied to three different acquisition schemes at 7 T. Twelve healthy volunteers were scanned twice. Each scan session consisted of a 6.5-min 3D acquisition-weighted (AW) cardiac 31 P phase encode-based MRSI acquisition and two 6.5-min truncated k-space acquisitions with increased averaging (4 × 4 × 4 central k-space phase encodes and fractional SLAM [fSLAM] optimized k-space phase encodes). Spectra were reconstructed using (i) AW Fourier reconstruction; (ii) AW SLAM; (iii) AW SLIM; (iv) 4 × 4 × 4 SLAM; (v) 4 × 4 × 4 SLIM; and (vi) fSLAM acquisition-reconstruction combinations. The phosphocreatine-to-adenosine triphosphate (PCr/ATP) ratio, the PCr SNR, and spatial response functions were computed, in addition to coefficients of reproducibility and variability. Using the compartment-based reconstruction algorithms with the AW 31 P acquisition resulted in a significant increase in SNR compared with previously published Fourier-based MRSI reconstruction methods while maintaining the measured PCr/ATP ratio and improving interscan reproducibility. The alternative acquisition strategies with truncated k-space performed no better than the common AW approach. Compartment-based spectroscopy approaches provide an attractive reconstruction method for cardiac 31 P spectroscopy at 7 T, improving reproducibility and SNR without the need for a dedicated k-space sampling strategy.

2.
Circ Res ; 126(6): 725-736, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32078413

RESUMEN

RATIONALE: The recent development of hyperpolarized 13C magnetic resonance spectroscopy has made it possible to measure cellular metabolism in vivo, in real time. OBJECTIVE: By comparing participants with and without type 2 diabetes mellitus (T2DM), we report the first case-control study to use this technique to record changes in cardiac metabolism in the healthy and diseased human heart. METHODS AND RESULTS: Thirteen people with T2DM (glycated hemoglobin, 6.9±1.0%) and 12 age-matched healthy controls underwent assessment of cardiac systolic and diastolic function, myocardial energetics (31P-magnetic resonance spectroscopy), and lipid content (1H-magnetic resonance spectroscopy) in the fasted state. In a subset (5 T2DM, 5 control), hyperpolarized [1-13C]pyruvate magnetic resonance spectra were also acquired and in 5 of these participants (3 T2DM, 2 controls), this was successfully repeated 45 minutes after a 75 g oral glucose challenge. Downstream metabolism of [1-13C]pyruvate via PDH (pyruvate dehydrogenase, [13C]bicarbonate), lactate dehydrogenase ([1-13C]lactate), and alanine transaminase ([1-13C]alanine) was assessed. Metabolic flux through cardiac PDH was significantly reduced in the people with T2DM (Fasted: 0.0084±0.0067 [Control] versus 0.0016±0.0014 [T2DM], Fed: 0.0184±0.0109 versus 0.0053±0.0041; P=0.013). In addition, a significant increase in metabolic flux through PDH was observed after the oral glucose challenge (P<0.001). As is characteristic of diabetes mellitus, impaired myocardial energetics, myocardial lipid content, and diastolic function were also demonstrated in the wider study cohort. CONCLUSIONS: This work represents the first demonstration of the ability of hyperpolarized 13C magnetic resonance spectroscopy to noninvasively assess physiological and pathological changes in cardiac metabolism in the human heart. In doing so, we highlight the potential of the technique to detect and quantify metabolic alterations in the setting of cardiovascular disease.


Asunto(s)
Diabetes Mellitus Tipo 2/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Miocardio/metabolismo , Anciano , Anciano de 80 o más Años , Alanina Transaminasa/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ayuno/metabolismo , Femenino , Glucosa/metabolismo , Humanos , L-Lactato Deshidrogenasa/metabolismo , Masculino , Persona de Mediana Edad , Complejo Piruvato Deshidrogenasa/metabolismo , Ácido Pirúvico/metabolismo
3.
Circulation ; 141(24): 1971-1985, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32438845

RESUMEN

BACKGROUND: Why some but not all patients with severe aortic stenosis (SevAS) develop otherwise unexplained reduced systolic function is unclear. We investigate the hypothesis that reduced creatine kinase (CK) capacity and flux is associated with this transition. METHODS: We recruited 102 participants to 5 groups: moderate aortic stenosis (ModAS) (n=13), SevAS, left ventricular (LV) ejection fraction ≥55% (SevAS-preserved ejection fraction, n=37), SevAS, LV ejection fraction <55% (SevAS-reduced ejection fraction, n=15), healthy volunteers with nonhypertrophied hearts with normal systolic function (normal healthy volunteer, n=30), and patients with nonhypertrophied, non-pressure-loaded hearts with normal systolic function undergoing cardiac surgery and donating LV biopsy (non-pressure-loaded heart biopsy, n=7). All underwent cardiac magnetic resonance imaging and 31P magnetic resonance spectroscopy for myocardial energetics. LV biopsies (AS and non-pressure-loaded heart biopsy) were analyzed for CK total activity, CK isoforms, citrate synthase activity, and total creatine. Mitochondria-sarcomere diffusion distances were calculated by using serial block-face scanning electron microscopy. RESULTS: In the absence of failure, CK flux was lower in the presence of AS (by 32%, P=0.04), driven primarily by reduction in phosphocreatine/ATP (by 17%, P<0.001), with CK kf unchanged (P=0.46). Although lowest in the SevAS-reduced ejection fraction group, CK flux was not different from the SevAS-preserved ejection fraction group (P>0.99). Accompanying the fall in CK flux, total CK and citrate synthase activities and the absolute activities of mitochondrial-type CK and CK-MM isoforms were also lower (P<0.02, all analyses). Median mitochondria-sarcomere diffusion distances correlated well with CK total activity (r=0.86, P=0.003). CONCLUSIONS: Total CK capacity is reduced in SevAS, with median values lowest in those with systolic failure, consistent with reduced energy supply reserve. Despite this, in vivo magnetic resonance spectroscopy measures of resting CK flux suggest that ATP delivery is reduced earlier, at the moderate AS stage, where LV function remains preserved. These findings show that significant energetic impairment is already established in moderate AS and suggest that a fall in CK flux is not by itself a necessary cause of transition to systolic failure. However, because ATP demands increase with AS severity, this could increase susceptibility to systolic failure. As such, targeting CK capacity and flux may be a therapeutic strategy to prevent and treat systolic failure in AS.


Asunto(s)
Estenosis de la Válvula Aórtica/sangre , Creatina Quinasa/sangre , Metabolismo Energético/fisiología , Volumen Sistólico/fisiología , Disfunción Ventricular Izquierda/sangre , Función Ventricular Izquierda/fisiología , Adenosina Trifosfato/sangre , Adulto , Anciano , Anciano de 80 o más Años , Estenosis de la Válvula Aórtica/diagnóstico , Estenosis de la Válvula Aórtica/fisiopatología , Biomarcadores/sangre , Femenino , Humanos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Disfunción Ventricular Izquierda/diagnóstico , Disfunción Ventricular Izquierda/fisiopatología
4.
Magn Reson Med ; 85(2): 790-801, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32894618

RESUMEN

PURPOSE: Hyperpolarized imaging experiments have conflicting requirements of high spatial, temporal, and spectral resolution. Spectral-spatial RF excitation has been shown to form an attractive magnetization-efficient method for hyperpolarized imaging, but the optimum readout strategy is not yet known. METHODS: In this work, we propose a novel 3D hybrid-shot spiral sequence which features two constant density regions that permit the retrospective reconstruction of either high spatial or high temporal resolution images post hoc, (adaptive spatiotemporal imaging) allowing greater flexibility in acquisition and reconstruction. RESULTS: We have implemented this sequence, both via simulation and on a preclinical scanner, to demonstrate its feasibility, in both a 1H phantom and with hyperpolarized 13C pyruvate in vivo. CONCLUSIONS: This sequence forms an attractive method for acquiring hyperpolarized imaging datasets, providing adaptive spatiotemporal imaging to ameliorate the conflict of spatial and temporal resolution, with significant potential for clinical translation.


Asunto(s)
Imagen Eco-Planar , Ácido Pirúvico , Isótopos de Carbono , Imagenología Tridimensional , Imagen por Resonancia Magnética , Fantasmas de Imagen , Estudios Retrospectivos
5.
Magn Reson Med ; 85(6): 2978-2991, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33538063

RESUMEN

PURPOSE: Phosphorus saturation-transfer experiments can quantify metabolic fluxes noninvasively. Typically, the forward flux through the creatine kinase reaction is investigated by observing the decrease in phosphocreatine (PCr) after saturation of γ-ATP. The quantification of total ATP utilization is currently underexplored, as it requires simultaneous saturation of inorganic phosphate ( Pi ) and PCr. This is challenging, as currently available saturation pulses reduce the already-low γ-ATP signal present. METHODS: Using a hybrid optimal-control and Shinnar-Le Roux method, a quasi-adiabatic RF pulse was designed for the dual saturation of PCr and Pi to enable determination of total ATP utilization. The pulses were evaluated in Bloch equation simulations, compared with a conventional hard-cosine DANTE saturation sequence, before being applied to perfused rat hearts at 11.7 T. RESULTS: The quasi-adiabatic pulse was insensitive to a >2.5-fold variation in B1 , producing equivalent saturation with a 53% reduction in delivered pulse power and a 33-fold reduction in spillover at the minimum effective B1 . This enabled the complete quantification of the synthesis and degradation fluxes for ATP in 30-45 minutes in the perfused rat heart. While the net synthesis flux (4.24 ± 0.8 mM/s, SEM) was not significantly different from degradation flux (6.88 ± 2 mM/s, P = .06) and both measures are consistent with prior work, nonlinear error analysis highlights uncertainties in the Pi -to-ATP measurement that may explain a trend suggesting a possible imbalance. CONCLUSIONS: This work demonstrates a novel quasi-adiabatic dual-saturation RF pulse with significantly improved performance that can be used to measure ATP turnover in the heart in vivo.


Asunto(s)
Adenosina Trifosfato , Miocardio , Animales , Creatina Quinasa , Espectroscopía de Resonancia Magnética , Fosfocreatina , Ratas
6.
Magn Reson Med ; 85(3): 1147-1159, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32929770

RESUMEN

PURPOSE: Phosphorus spectroscopy (31 P-MRS) is a proven method to probe cardiac energetics. Studies typically report the phosphocreatine (PCr) to adenosine triphosphate (ATP) ratio. We focus on another 31 P signal: inorganic phosphate (Pi), whose chemical shift allows computation of myocardial pH, with Pi/PCr providing additional insight into cardiac energetics. Pi is often obscured by signals from blood 2,3-diphosphoglycerate (2,3-DPG). We introduce a method to quantify Pi in 14 min without hindrance from 2,3-DPG. METHODS: Using a 31 P stimulated echo acquisition mode (STEAM) sequence at 7 Tesla that inherently suppresses signal from 2,3-DPG, the Pi peak was cleanly resolved. Resting state UTE-chemical shift imaging (PCr/ATP) and STEAM 31 P-MRS (Pi/PCr, pH) were undertaken in 23 healthy controls; pH and Pi/PCr were subsequently recorded during dobutamine infusion. RESULTS: We achieved a clean Pi signal both at rest and stress with good 2,3-DPG suppression. Repeatability coefficient (8 subjects) for Pi/PCr was 0.036 and 0.12 for pH. We report myocardial Pi/PCr and pH at rest and during catecholamine stress in healthy controls. Pi/PCr was maintained during stress (0.098 ± 0.031 [rest] vs. 0.098 ± 0.031 [stress] P = .95); similarly, pH did not change (7.09 ± 0.07 [rest] vs. 7.08 ± 0.11 [stress] P = .81). Feasibility for patient studies was subsequently successfully demonstrated in a patient with cardiomyopathy. CONCLUSION: We introduced a method that can resolve Pi using 7 Tesla STEAM 31 P-MRS. We demonstrate the stability of Pi/PCr and myocardial pH in volunteers at rest and during catecholamine stress. This protocol is feasible in patients and potentially of use for studying pathological myocardial energetics.


Asunto(s)
Dobutamina , Miocardio , Adenosina Trifosfato , Humanos , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Fosfatos , Fosfocreatina
7.
Magn Reson Med ; 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33090502

RESUMEN

PURPOSE: Phosphorous MR spectroscopy (31P-MRS) forms a powerful, non-invasive research tool to quantify the energetics of the heart in diverse patient populations. 31P-MRS is frequently applied alongside other radiological examinations, many of which use various contrast agents that shorten relaxation times of water in conventional proton MR, for a better characterisation of cardiac function, or following prior computed tomography (CT). It is, however, unknown whether these agents confound 31P-MRS signals, for example, 2,3-diphosphoglycerate (2,3-DPG). METHODS: In this work, we quantitatively assess the impact of non-ionic, low osmolar iodinated CT contrast agent (iopamidol/Niopam), gadolinium chelates (linear gadopentetic acid dimeglumine/Magnevist and macrocyclic gadoterate meglumine/Dotarem) and superparamagnetic iron oxide nanoparticles (ferumoxytol/Feraheme) on the nuclear T1 and T2 of 31P metabolites (ie, 2,3-DPG), and 1H in water in live human blood and saline phantoms at 11.7 T. RESULTS: Addition of all contrast agents led to significant shortening of all relaxation times in both 1H and 31P saline phantoms. On the contrary, the T1 relaxation time of 2,3-DPG in blood was significantly shortened only by Magnevist (P = .03). Similarly, the only contrast agent that influenced the T2 relaxation times of 2,3-DPG in blood samples was ferumoxytol (P = .02). CONCLUSION: Our results show that, unlike conventional proton MR, phosphorus MRS is unconfounded in patients who have had prior CT with contrast, not all gadolinium-based contrast agents influence 31P-MRS data in vivo, and that ferumoxytol is a promising contrast agent for the reduction in 31P-MRS blood-pool signal.

8.
NMR Biomed ; 33(5): e4269, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32133713

RESUMEN

Hyperpolarized (HP) 13C MRI provides the means to monitor lactate metabolism noninvasively in tumours. Since 13C -lactate signal levels obtained from HP 13C imaging depend on multiple factors, such as the rate of 13C substrate delivery via the vasculature, the expression level of monocarboxylate transporters (MCTs) and lactate dehydrogenase (LDH), and the local lactate pool size, the interpretation of HP 13C metabolic images remains challenging. In this study, ex vivo tissue extract measurements (i.e., NMR isotopomer analysis, western blot analysis) derived from an MDA-MB-231 xenograft model in nude rats were used to test for correlations between the in vivo 13C data and the ex vivo measures. The lactate-to-pyruvate ratio from HP 13C MRI was strongly correlated with [1- 13C ]lactate concentration measured from the extracts using NMR (R = 0.69, p < 0.05), as well as negatively correlated with tumour wet weight (R = -  0.60, p < 0.05). In this tumour model, both MCT1 and MCT4 expressions were positively correlated with wet weight ( ρ = 0.78 and 0.93, respectively, p < 0.01). Lactate pool size and the lactate-to-pyruvate ratio were not significantly correlated.


Asunto(s)
Isótopos de Carbono/química , Imagen por Resonancia Magnética , Extractos de Tejidos/análisis , Animales , Línea Celular Tumoral , Masculino , Ratas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Magn Reson Med ; 80(4): 1588-1594, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29427366

RESUMEN

PURPOSE: To investigate the feasibility of performing large FOV hyperpolarized 13 C metabolic imaging using simultaneous multislice excitation. METHODS: A spectral-spatial multislice excitation pulse was constructed by cosine modulation and incorporated into a 13 C spiral imaging sequence. Phantom and in vivo pig experiments were performed to test the feasibility of simultaneous multislice data acquisition and image reconstruction. In vivo cardiac-gated images of hyperpolarized pyruvate, bicarbonate, and lactate were obtained at 1 × 1 × 1 cm3 resolution over a 48 × 48 × 24 cm3 FOV with 2-fold acceleration in the slice direction. Sensitivity encoding was used for image reconstruction with both autocalibrated and numerically calculated coil sensitivities. RESULTS: Simultaneous multislice images obtained with 2-fold acceleration were comparable to reference unaccelerated images. Retained SNR figures greater than 80% were achieved over the part of the image containing the heart. CONCLUSION: This method is anticipated to enable large FOV imaging studies using hyperpolarized 13 C substrates, with an aim toward whole-body exams that have to date been out of reach.


Asunto(s)
Isótopos de Carbono/química , Corazón/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Animales , Ácido Láctico/química , Miocardio/metabolismo , Fantasmas de Imagen , Ácido Pirúvico/química , Relación Señal-Ruido , Porcinos
10.
Magn Reson Med ; 79(2): 643-653, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28394085

RESUMEN

PURPOSE: To provide built-in off-resonance correction in time-resolved, volumetric hyperpolarized 13 C metabolic imaging by implementing a novel dual-echo 3D echo-planar imaging (EPI) sequence and reconstruction. METHODS: A spectral-spatial pulse for single-resonance excitation followed by a dual-echo 3D EPI readout was implemented to provide 64 × 8 × 6 cm3 coverage at 5 × 5 × 5 mm3 nominal resolution. Multiple sources of EPI distortions were encoded using a multi-echo 1 H EPI reference scan. Phase maps computed from the reference scans were combined with a bulk 13 C frequency offset encoded in the dual-echo [1-13 C]pyruvate images to correct geometric distortion and improve spatial registration. The proposed scheme was validated in a phantom study, and in vivo [1-13 C]pyruvate and [1-13 C]lactate rat images were acquired with intentional transmit frequency deviations to assess the dual-echo 3D EPI sequence. RESULTS: The phantom study demonstrated improved spatial registration in off-resonance corrected images. Close agreement was observed between metabolic kidney signal and the underlying anatomy in rat imaging experiments. Relative to a single-echo acquisition, the coherent addition of the two corrected echoes provided the expected increase in signal-to-noise ratio by approximately 2. CONCLUSION: A novel dual-echo 3D EPI acquisition sequence for integrated off-resonance correction in hyperpolarized 13 C imaging was developed and demonstrated. The proposed sequence offers clear advantages over flyback EPI for time-resolved metabolic mapping. Magn Reson Med 79:643-653, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Imagen Eco-Planar/métodos , Imagenología Tridimensional/métodos , Imagen Molecular/métodos , Animales , Riñón/diagnóstico por imagen , Fantasmas de Imagen , Ratas , Ratas Sprague-Dawley
11.
Circ Res ; 119(11): 1177-1182, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27635086

RESUMEN

RATIONALE: Altered cardiac energetics is known to play an important role in the progression toward heart failure. A noninvasive method for imaging metabolic markers that could be used in longitudinal studies would be useful for understanding therapeutic approaches that target metabolism. OBJECTIVE: To demonstrate the first hyperpolarized 13C metabolic magnetic resonance imaging of the human heart. METHODS AND RESULTS: Four healthy subjects underwent conventional proton cardiac magnetic resonance imaging followed by 13C imaging and spectroscopic acquisition immediately after intravenous administration of a 0.1 mmol/kg dose of hyperpolarized [1-13C]pyruvate. All subjects tolerated the procedure well with no adverse effects reported ≤1 month post procedure. The [1-13C]pyruvate signal appeared within the chambers but not within the muscle. Imaging of the downstream metabolites showed 13C-bicarbonate signal mainly confined to the left ventricular myocardium, whereas the [1-13C]lactate signal appeared both within the chambers and in the myocardium. The mean 13C image signal:noise ratio was 115 for [1-13C]pyruvate, 56 for 13C-bicarbonate, and 53 for [1-13C]lactate. CONCLUSIONS: These results represent the first 13C images of the human heart. The appearance of 13C-bicarbonate signal after administration of hyperpolarized [1-13C]pyruvate was readily detected in this healthy cohort (n=4). This shows that assessment of pyruvate metabolism in vivo in humans is feasible using current technology. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02648009.


Asunto(s)
Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Miocardio/metabolismo , Adulto , Isótopos de Carbono , Humanos , Masculino , Persona de Mediana Edad , Ácido Pirúvico/metabolismo
12.
Magn Reson Med ; 77(2): 538-546, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-26806525

RESUMEN

PURPOSE: To enable large field-of-view, time-resolved volumetric coverage in hyperpolarized 13 C metabolic imaging by implementing a novel data acquisition and image reconstruction method based on the compressed sensing framework. METHODS: A spectral-spatial pulse for single-resonance excitation followed by a symmetric echo-planar imaging (EPI) readout was implemented for encoding a 72 × 18 cm2 field of view at 5 × 5 mm2 resolution. Random undersampling was achieved with blipped z-gradients during the ramp portion of the echo-planar imaging readout. The sequence and reconstruction were tested with phantom studies and consecutive in vivo hyperpolarized 13 C scans in rats. Retrospectively and prospectively undersampled data were compared on the basis of structural similarity in the reconstructed images and the quantification of the lactate-to-pyruvate ratio in rat kidneys. RESULTS: No artifacts or loss of resolution are evident in the compressed sensing reconstructed images acquired with the proposed sequence. Structural similarity analysis indicate that compressed sensing reconstructions can accurately recover spatial features in the metabolic images evaluated. CONCLUSION: A novel z-blip acquisition sequence for compressed sensing accelerated hyperpolarized 13 C 3D echo-planar imaging was developed and demonstrated. The close agreement in lactate-to-pyruvate ratios from both retrospectively and prospectively undersampled data from rats shows that metabolic information is preserved with acceleration factors up to 3-fold with the developed method. Magn Reson Med 77:538-546, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Compresión de Datos/métodos , Imagen Eco-Planar/métodos , Aumento de la Imagen/métodos , Imagenología Tridimensional/métodos , Riñón/metabolismo , Procesamiento de Señales Asistido por Computador , Algoritmos , Animales , Artefactos , Imagen Eco-Planar/instrumentación , Ácido Láctico/metabolismo , Imagen Molecular/instrumentación , Imagen Molecular/métodos , Movimiento (Física) , Fantasmas de Imagen , Ácido Pirúvico/metabolismo , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
13.
Magn Reson Med ; 77(4): 1553-1561, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27080189

RESUMEN

PURPOSE: 1 H MRI is an established diagnostic method that generally relies on detection of water. Imaging specific macromolecules is normally accomplished only indirectly through the use of paramagnetic tags, which alter the water signal in their vicinity. We demonstrate a new approach in which macromolecular constituents, such as proteins and drug delivery systems, are observed directly and quantitatively in vivo using 1 H MRI of 13 C-labeled poly(ethylene glycol) (13 C-PEG) tags. METHODS: Molecular imaging of 13 C-PEG-labeled species was accomplished by incorporating a modified heteronuclear multiple quantum coherence filter into a gradient echo imaging sequence. We demonstrate the approach by monitoring the real-time distribution of 13 C-PEG and 13 C-PEGylated albumin injected into the hind leg of a mouse. RESULTS: Filtering the 1 H PEG signal through the directly coupled 13 C nuclei largely eliminates background water and fat signals, thus enabling the imaging of molecules using 1 H MRI. CONCLUSION: PEGylation is widely employed to enhance the performance of a multitude of macromolecular therapeutics and drug delivery systems, and 13 C-filtered 1 H MRI of 13 C-PEG thus offers the possibility of imaging and quantitating their distribution in living systems in real time. Magn Reson Med 77:1553-1561, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Imagen por Resonancia Magnética/métodos , Imagen Molecular/métodos , Nanocápsulas/análisis , Polietilenglicoles/análisis , Espectroscopía de Protones por Resonancia Magnética/métodos , Algoritmos , Animales , Marcaje Isotópico , Masculino , Ratones , Ratones Endogámicos BALB C , Nanocápsulas/química , Polietilenglicoles/química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador
14.
Magn Reson Med ; 75(2): 859-65, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26619820

RESUMEN

PURPOSE: Develop and test an analytic correction method to correct the signal intensity variation caused by the inhomogeneous reception profile of an eight-channel phased array for hyperpolarized (13) C imaging. THEORY AND METHODS: Fiducial markers visible in anatomical images were attached to the individual coils to provide three dimensional localization of the receive hardware with respect to the image frame of reference. The coil locations and dimensions were used to numerically model the reception profile using the Biot-Savart Law. The accuracy of the coil sensitivity estimation was validated with images derived from a homogenous (13) C phantom. Numerical coil sensitivity estimates were used to perform intensity correction of in vivo hyperpolarized (13) C cardiac images in pigs. RESULTS: In comparison to the conventional sum-of-squares reconstruction, improved signal uniformity was observed in the corrected images. CONCLUSION: The analytical intensity correction scheme was shown to improve the uniformity of multichannel image reconstruction in hyperpolarized [1-(13) C]pyruvate and (13) C-bicarbonate cardiac MRI. The method is independent of the pulse sequence used for (13) C data acquisition, simple to implement and does not require additional scan time, making it an attractive technique for multichannel hyperpolarized (13) C MRI.


Asunto(s)
Corazón/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Animales , Isótopos de Carbono , Aumento de la Imagen/métodos , Imagenología Tridimensional , Fantasmas de Imagen , Sensibilidad y Especificidad , Porcinos
15.
NMR Biomed ; 29(8): 1038-47, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27295304

RESUMEN

In this study, a mixture of pyruvic acid and the perfusion agent HP001 was co-polarized for simultaneous assessment of perfusion and metabolism in vivo. The pre-polarized mixture was administered to rats with subcutaneous MDA-MB-231 breast cancer xenografts and imaged using an interleaved sequence with designed spectral-spatial pulses and flyback echo-planar readouts. Voxel-by-voxel signal correlations from 10 animals (15 data sets) were analyzed for tumour, kidney, and muscle regions of interest. The relationship between perfusion and hyperpolarized signal was explored on a voxel-by-voxel basis in various metabolically active tissues, including tumour, healthy kidneys, and skeletal muscle. Positive pairwise correlations between lactate, pyruvate, and HP001 observed in all 10 tumours suggested that substrate delivery was the dominant factor limiting the conversion of pyruvate to lactate in the tumour model used in this study. On the other hand, in cases where conversion is the limiting factor, such as in healthy kidneys, both pyruvate and lactate can act as excellent perfusion markers. In intermediate cases between the two limits, such as in skeletal muscle, some perfusion information may be inferred from the (pyruvate + lactate) signal distribution. Co-administration of pyruvate with a dynamic nuclear polarization (DNP) perfusion agent is an effective approach for distinguishing between slow metabolism and poor perfusion and a practical strategy for lactate signal normalization to account for substrate delivery, especially in cases of rapid pyruvate-to-lactate conversion and in poorly perfused regions with inadequate pyruvate signal-to-noise ratio for reliable determination of the lactate-to-pyruvate ratio. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Ácido Láctico/metabolismo , Neovascularización Patológica/patología , Ácido Pirúvico/metabolismo , Procesamiento de Señales Asistido por Computador , Animales , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Medios de Contraste/farmacocinética , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Imagen Molecular/métodos , Neovascularización Patológica/metabolismo , Ratas , Ratas Desnudas
16.
Magn Reson Med ; 73(6): 2087-93, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25046652

RESUMEN

PURPOSE: Hyperpolarized [1-(13) C]lactate in solution may be a clinically relevant and safe substrate for real time MR investigations of key metabolic pathways. The potential of using hyperpolarized [1-(13) C]lactate for magnetic resonance studies of cardiac metabolism in vivo was explored. METHODS: Neat [1-(13) C]lactic acid was hyperpolarized using the dynamic nuclear polarization process. Cardiac MR spectroscopy experiments were performed in vivo using hyperpolarized [1-(13) C]lactate and [1-(13) C]pyruvate in solutions. RESULTS: A high degree of polarization was achieved for [1-(13) C]lactate in solution (16.7%). (13) C-bicarbonate was observed in rat hearts in vivo after either hyperpolarized [1-(13) C]lactate or hyperpolarized [1-(13) C]pyruvate was infused, but lower (13) C-bicarbonate to substrate ratio was observed with hyperpolarized [1-(13) C]lactate infusions. The response of (13) C-bicarbonate signal as a function of hyperpolarized [1-(13) C]lactate doses was also investigated and a saturation of (13) C-bicarbonate signal was observed at the highest dose of [1-(13) C]lactate used (0.69 mmol/kg). CONCLUSION: This study demonstrated that the use of neat [1-(13) C]lactic acid as the DNP sample is a potential alternative to [1-(13) C]pyruvic acid for cardiac hyperpolarized (13) C MR studies. Hyperpolarized [1-(13) C]lactate may enable noninvasive assessment of cardiac PDH flux in cardiac patients in the near future.


Asunto(s)
Ácido Láctico/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Miocardio/metabolismo , Animales , Bicarbonatos/metabolismo , Isótopos de Carbono , Ácido Pirúvico/metabolismo , Ratas , Ratas Sprague-Dawley
17.
NMR Biomed ; 28(10): 1236-44, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26268158

RESUMEN

Although current cardiovascular MR (CMR) techniques for the detection of myocardial fibrosis have shown promise, they nevertheless depend on gadolinium-based contrast agents and are not specific to collagen. In particular, the diagnosis of diffuse myocardial fibrosis, a precursor of heart failure, would benefit from a non-invasive imaging technique that can detect collagen directly. Such a method could potentially replace the need for endomyocardial biopsy, the gold standard for the diagnosis of the disease. The objective of this study was to measure the MR properties of collagen using ultrashort TE (UTE), a technique that can detect short T2* species. Experiments were performed in collagen solutions. Via a model of bi-exponential T2* with oscillation, a linear relationship (slope = 0.40 ± 0.01, R(2) = 0.99696) was determined between the UTE collagen signal fraction associated with these properties and the measured collagen concentration in solution. The UTE signal of protons in the collagen molecule was characterized as having a mean T2* of 0.75 ± 0.05 ms and a mean chemical shift of -3.56 ± 0.01 ppm relative to water at 7 T. The results indicated that collagen can be detected and quantified using UTE. A knowledge of the collagen signal properties could potentially be beneficial for the endogenous detection of myocardial fibrosis.


Asunto(s)
Colágeno Tipo III/química , Colágeno Tipo I/química , Espectroscopía de Resonancia Magnética , Animales , Bovinos , Fibrosis Endomiocárdica/diagnóstico , Fibrosis Endomiocárdica/metabolismo , Estudios de Factibilidad , Humanos , Técnicas In Vitro , Protones , Soluciones
18.
Biomedicines ; 12(2)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38398062

RESUMEN

Acidosis is an important immunosuppressive mechanism that leads to tumor growth. Therefore, we investigated the neutralization of tumor acidity to improve immunotherapy response. L-DOS47, a new targeted urease immunoconjugate designed to neutralize tumor acidity, has been well tolerated in phase I/IIa trials. L-DOS47 binds to CEACAM6, a cell-surface protein that is highly expressed in gastrointestinal cancers, allowing urease to cleave endogenous urea into two NH4+ and one CO2, thereby raising local pH. To test the synergetic effect of neutralizing tumor acidity with immunotherapy, we developed a pancreatic orthotopic murine tumor model (KPC961) expressing human CEACAM6. Using chemical exchange saturation transfer-magnetic resonance imaging (CEST-MRI) to measure the tumor extracellular pH (pHe), we confirmed that L-DOS47 raises the tumor pHe from 4 h to 96 h post injection in acidic tumors (average increase of 0.13 units). Additional studies showed that combining L-DOS47 with anti-PD1 significantly increases the efficacy of the anti-PD1 monotherapy, reducing tumor growth for up to 4 weeks.

20.
NMR Biomed ; 26(10): 1233-41, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23553912

RESUMEN

A calibration-based technique for real-time measurement of pyruvate polarization by partial integral analysis of the doublet from the neighbouring J-coupled carbon is presented. In vitro calibration data relating the C2 and C1 asymmetries to the instantaneous C1 and C2 polarizations, respectively, were acquired in blood. The feasibility of using the in vitro calibration data to determine the instantaneous in vivo C1 and C2 polarizations was demonstrated in the analysis of rat kidney and pig heart spectral data. An approach for incorporating this technique into in vivo protocols is proposed.


Asunto(s)
Sistemas de Computación , Espectroscopía de Resonancia Magnética/métodos , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Animales , Calibración , Isótopos de Carbono , Riñón/metabolismo , Masculino , Miocardio/metabolismo , Ácido Pirúvico/sangre , Conejos , Ratas , Ratas Desnudas , Sus scrofa , Termodinámica , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA