Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 707: 136030, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-31869617

RESUMEN

Microplastics are ubiquitous pollutants found in environments. Mangrove sediments containing vegetal litter are different from other environmental matrices such as river and marine sediments. The presence of vegetal litter leads to an under-estimation of microplastic pollution, particularly classical digestion methods are not suitable for removing this type of organic matter. The present study aims to develop a digestion method to remove vegetal litter and improve the determination of microplastic pollution in mangrove sediments. Results showed that our three-stage method with repeatedly addition of hydrogen peroxide had the highest efficiency in removing mangrove vegetal litter when compared with the three classical digestion methods. The high match scores of Fourier Transform Infrared Spectroscopy proved that the developed method had little impacts on the integrity of five polymer types of microplastics. The developed method also achieved high efficiency in extracting microplastics from mangrove sediments containing different content of vegetal litter. CAPSULE: A digestion method was developed for extracting microplastics in clayey mangrove sediments rich in vegetal litter.

2.
RSC Adv ; 9(58): 33716-33721, 2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-35528871

RESUMEN

We report herein a new microporous neutral three-dimensional (3D) metal-organic framework [Cu2(L)(DMF)(H2O)]·guest (1·guest) composed of copper paddle-wheel and flexible tetracarboxylic acid linkers (DMF = N,N-dimethylformamide, H4L = tetrakis[(6-carboxynaphthoxy)methyl]methane). Surprisingly, this MOF with neutral cavities can not only extract pure quercetin (QT) but also convert it into Cu-QT during the desorption process. It has been well characterized by UV-vis, IR, ESI-MS and TEM-EDS studies. Moreover, it can efficiently extract natural product QT from fresh QT-rich onion juice and rapidly convert it into Cu-QT with a relatively high conversion rate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA