Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
ACS Infect Dis ; 9(3): 527-539, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36763526

RESUMEN

Current malaria treatments are threatened by drug resistance, and new drugs are urgently needed. In a phenotypic screen for new antimalarials, we identified (S)-SW228703 ((S)-SW703), a tyrosine amide with asexual blood and liver stage activity and a fast-killing profile. Resistance to (S)-SW703 is associated with mutations in the Plasmodium falciparum cyclic amine resistance locus (PfCARL) and P. falciparum acetyl CoA transporter (PfACT), similarly to several other compounds that share features such as fast activity and liver-stage activity. Compounds with these resistance mechanisms are thought to act in the ER, though their targets are unknown. The tyramine of (S)-SW703 is shared with some reported PfCARL-associated compounds; however, we observed that strict S-stereochemistry was required for the activity of (S)-SW703, suggesting differences in the mechanism of action or binding mode. (S)-SW703 provides a new chemical series with broad activity for multiple life-cycle stages and a fast-killing mechanism of action, available for lead optimization to generate new treatments for malaria.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Humanos , Antimaláricos/farmacología , Antimaláricos/química , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Malaria Falciparum/tratamiento farmacológico , Malaria/tratamiento farmacológico , Hígado , Aminas/metabolismo
2.
J Mol Model ; 18(4): 1661-6, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21811776

RESUMEN

Although they were first reported in 1963, molecules with a boron-oxygen-nitrogen dimeric backbone do not seem to have been investigated seriously in terms of thermodynamic properties. Here we report on the calculated structures and properties, including thermodynamics, of several so-called "BON-BON" molecules. With the popularity of nitrogen-containing substituents on new high-energy materials, nitro-substituted BON-BONs were a focus of our investigation. A total of 42 BON-BON molecules were evaluated, and thermochemical analysis shows a decrease in the specific enthalpy of combustion or decomposition with increasing NO(2) content, consistent with other systems.


Asunto(s)
Compuestos de Boro/química , Óxidos N-Cíclicos/química , Boro/química , Modelos Moleculares , Estructura Molecular , Nitrógeno/química , Oxígeno/química , Teoría Cuántica , Termodinámica
3.
J Mol Model ; 18(5): 1723-8, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21833826

RESUMEN

As a follow-up on a study of a family of boron-oxygen-nitrogen compounds composed of two datively bonded B-O-N backbones, we investigate a similar series of compounds that have similar fragments but are covalently bonded. B3LYP/6-31G(d,p) quantum mechanical calculations have been performed to determine the minimum-energy geometries, vibrational frequencies, and thermochemical properties of the parent compound and a series of nitro-substituted derivatives. Our results indicate that some of the derivatives have at least appropriate thermodynamics for possible high-energy materials, in some cases being favorable over similar dimeric compounds with coordinate covalent B-N bonds.


Asunto(s)
Boro/química , Nitrógeno/química , Oxígeno/química , Modelos Moleculares , Teoría Cuántica , Espectrofotometría Infrarroja , Termodinámica , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA