RESUMEN
Osteoclasts derived from hematopoietic stem cells control bone resorption. Identifying novel molecules that can epigenetically regulate osteoclastogenesis is important for developing novel treatments for osteoporosis and other disorders associated with bone deterioration and promoting healthy bone formation. The polycomb group (PcG) protein enhancer of zeste homolog 2 (Ezh2), a histone lysine methyltransferase, is associated with epigenetic regulation of numerous cellular processes, but its involvement in bone cell development and homeostasis is not yet clear. Here, LysM-Cre mice were crossed with Ezh2flox/flox mice to delete Ezh2 in myeloid cell lineage mature macrophages. Conditional knockout of Ezh2 (CKO) in myeloid cell line resulted in significant increases in postnatal bone growth in the first 6 months of life for both male and female mice. For female mice, optimal bone mass was seen for mice with Ezh2 deleted in both chromosomes in a pair (f/f Cre+ ; CKO). For male mice, optimal bone mass was found after deletion of Ezh2 from just one chromosome (f/- Cre+ ) with no difference in bone phenotype between f/- Cre+ and CKO male mice. In addition to the gender-specific difference in bone phenotype, Ezh2 CKO mice had significantly less macrophages (CD11b+) present in the bone marrow compared with control mice as well as significantly more mature osteoblasts and bone formation biomarkers present (P1NP, osteocalcin). Inflammatory array for protein lysed from bone tissue revealed deletion of Ezh2 decreased inflammatory milieu in both male and female mice compared with controls. Unexpectedly, myeloid cell deletion of Ezh2 also increased the number of mature osteoblast present in the bone. Deletion of Ezh2 also led to an increase in gene expression of osteoclast-suppressive genes IRF8, MafB, and Arg1 due to a decrease in the presence of the suppressive H3K27me3 epigenetic mark. These findings suggest that manipulation of Ezh2 expression may be a viable strategy to combat bone resorptive disorders such as osteoporosis or arthritis.
Asunto(s)
Resorción Ósea , Proteína Potenciadora del Homólogo Zeste 2 , Osteoporosis , Animales , Femenino , Masculino , Ratones , Resorción Ósea/genética , Resorción Ósea/metabolismo , Diferenciación Celular/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética , Ratones Noqueados , Osteoclastos/metabolismo , Osteogénesis/genética , Osteoporosis/metabolismoRESUMEN
Nutritional status during intrauterine and/or early postnatal life has substantial influence on adult offspring health. Along these lines, there is a growing body of evidence illustrating that high fat diet (HFD)-induced maternal obesity can regulate fetal bone development. Thus, we investigated the effects of maternal obesity on both fetal skeletal development and mechanisms linking maternal obesity to osteoblast differentiation in offspring. Embryonic osteogenic calvarial cells (EOCCs) were isolated from fetuses at gestational day 18.5 (E18.5) of HFD-induced obese rat dams. We observed impaired differentiation of EOCCs to mature osteoblasts from HFD obese dams. ChIP-seq-based genome-wide localization of the repressive histone mark H3K27me3 (mediated via the polycomb histone methyltransferase, enhancer of zeste homologue 2 [Ezh2]) showed that this phenotype was associated with increased enrichment of H3K27me3 on the gene of SATB2, a critical transcription factor required for osteoblast differentiation. Knockdown of Ezh2 in EOCCs and ST2 cells increased SATB2 expression; while Ezh2 overexpression in EOCCs and ST2 cells decreased SATB2 expression. These data were consistent with experimental results showing strong association between H3K27me3, Ezh2, and SATB2 in cells from rats and humans. We have further presented that SATB2 mRNA and protein expression were increased in bones, and increased trabecular bone mass from pre-osteoblast specific Ezh2 deletion (Ezh2flox/flox Osx-Cre+ cko) mice compared with those from control Cre+ mice. These findings indicate that maternal HFD-induced obesity may be associated with decreasing fetal pre-osteoblastic cell differentiation, under epigenetic control of SATB2 expression via Ezh2-dependent mechanisms.
Asunto(s)
Diferenciación Celular/efectos de los fármacos , Grasas de la Dieta/efectos adversos , Feto , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas de Unión a la Región de Fijación a la Matriz/biosíntesis , Desarrollo Musculoesquelético/efectos de los fármacos , Obesidad Materna , Osteoblastos , Factores de Transcripción/biosíntesis , Animales , Línea Celular , Grasas de la Dieta/farmacología , Femenino , Feto/embriología , Feto/patología , Humanos , Obesidad Materna/inducido químicamente , Obesidad Materna/metabolismo , Obesidad Materna/patología , Osteoblastos/patología , Embarazo , RatasRESUMEN
Nutritional factors influence bone development. Previous studies demonstrated that bone mass significantly increased with suppressed bone resorption in early life of rats fed with AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB) powder for 2 weeks. However, the effects of increased phenolic acids in animal serum due to this diet on bone and bone resorption were unclear. This in vitro and in ex vivo study examined the effects of phenolic hippuric acid (HA) and 3-(3-hydroxyphenyl) propionic acid (3-3-PPA) on osteoclastic cell differentiation and bone resorption. We cultured murine osteoclast (macrophage) cell line, RAW 264.7 cells, and hematopoietic osteoclast progenitor cells (isolated from 4-week-old C57BL6/J mice) with 50 ng/ml of receptor activator of nuclear factor κ-Β ligand (RANKL). Morphologic studies showed decreased osteoclast number with treatment of 2.5% mouse serum from BB diet-fed animals compared with those treated with serum from standard casein diet-fed mice in both RAW 264.7 cell and primary cell cultures. HA and 3-3-PPA, but not 3-4-PPA, had dose-dependent suppressive effects on osteoclastogenesis and osteoclast resorptive activity in Corning osteo-assay plates. Signaling pathway analysis showed that after pretreatment with HA or 3-3-PPA, RANKL-stimulated increase of osteoclastogenic markers, such as nuclear factor of activated T-cells, cytoplasmic 1 and matrix metallopeptidase 9 gene/protein expression were blunted. Inhibitory effects of HA and 3-3-PPA on osteoclastogenesis utilized RANKL/RANK independent mediators. The study revealed that HA and 3-3-PPA significantly inhibited osteoclastogenesis and bone osteoclastic resorptive activity.
Asunto(s)
Hipuratos/farmacología , Osteogénesis/efectos de los fármacos , Fenoles/farmacología , Propionatos/farmacología , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Animales , Células de la Médula Ósea/citología , Resorción Ósea/tratamiento farmacológico , Línea Celular , AMP Cíclico/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Osteoclastos/citología , Osteogénesis/fisiología , Células RAW 264.7 , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
Nutritional status during intrauterine and early postnatal life impacts the risk of chronic diseases; however, evidence for an association between early-life dietary factors and bone health in adults is limited. Soy protein isolate (SPI) may be one such dietary factor that promotes bone accretion during early life with persistent effects into adulthood. In the present study, we fed postnatal day (PND) 24 weanling female rats an SPI diet for 30 d [short-term SPI (ST-SPI)], and on PND 55, we switched SPI diet to control Cas diet until age 6 mo. Rats then underwent either ovariectomy (OVX) or sham surgery and thereafter either continued to be fed an SPI diet or control diet for 1 or 3 wk. We showed significantly increased bone mass in 30-d SPI-fed young rats compared with controls. OVX-induced bone loss was associated with increased osteoblastic cell senescence. On the one hand, both long-term SPI (continuous SPI diet throughout life) and ST-SPI diet only in early life protected against 1 wk post-OVX-associated bone loss. On the other hand, long-term SPI diet diminished the loss of total, trabecular, and cortical bone mineral density, whereas ST-SPI diet only reduced cortical bone mineral density loss 3 wk post-OVX. Persistent and protective effects of SPI diets on OVX-induced bone loss were associated with down-regulation of the caveolin-1/p53-mediated senescence pathway in bone. We recapitulated these results in cell cultures. Reprogramming of cellular senescence signaling by SPI-associated isoflavones in osteoblastic cells may explain the persistent effects of SPI on bone. These results suggest that OVX-induced bone loss, in part, is a result of increased osteoblastic cell senescence, and that ST-SPI diet early in life has modest but persistent programming effects on bone formation to prevent OVX-induced bone loss in adult female rats.-Chen, J.-R., Lazarenko, O. P., Blackburn, M. L., Shankar, K. Dietary factors during early life program bone formation in female rats.
Asunto(s)
Alimentación Animal/análisis , Desarrollo Óseo/fisiología , Caveolina 1/metabolismo , Proteínas de Soja/farmacología , Animales , Densidad Ósea/fisiología , Caveolina 1/genética , Senescencia Celular , Dieta , Regulación hacia Abajo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Ovariectomía , Ratas , Ratas Sprague-Dawley , Proteínas de Soja/administración & dosificaciónRESUMEN
Bone remodeling is age-dependently regulated and changes dramatically during the course of development. Progressive accumulation of reactive oxygen species (ROS) has been suspected to be the leading cause of many inflammatory and degenerative diseases, as well as an important factor underlying many effects of aging. In contrast, how reduced ROS signaling regulates inflammation and remodeling in bone remains unknown. Here, we utilized a p47(phox) knock-out mouse model, in which an essential cytosolic co-activator of Nox2 is lost, to characterize bone metabolism at 6 weeks and 2 years of age. Compared with their age-matched wild type controls, loss of Nox2 function in p47(phox-/-) mice resulted in age-related switch of bone mass and strength. Differences in bone mass were associated with increased bone formation in 6-week-old p47(phox-/-) mice but decreased in 2-year-old p47(phox-/-) mice. Despite decreases in ROS generation in bone marrow cells and p47(phox)-Nox2 signaling in osteoblastic cells, 2-year-old p47(phox-/-) mice showed increased senescence-associated secretory phenotype in bone compared with their wild type controls. These in vivo findings were mechanistically recapitulated in ex vivo cell culture of primary fetal calvarial cells from p47(phox-/-) mice. These cells showed accelerated cell senescence pathway accompanied by increased inflammation. These data indicate that the observed age-related switch of bone mass in p47(phox)-deficient mice occurs through an increased inflammatory milieu in bone and that p47(phox)-Nox2-dependent physiological ROS signaling suppresses inflammation in aging.
Asunto(s)
Envejecimiento , Desarrollo Óseo , Inflamación/inmunología , Glicoproteínas de Membrana/inmunología , NADPH Oxidasas/inmunología , Especies Reactivas de Oxígeno/inmunología , Animales , Huesos/citología , Huesos/inmunología , Huesos/fisiología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Eliminación de Gen , Inflamación/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 2 , NADPH Oxidasas/genética , Osteoblastos/citología , Osteoblastos/inmunología , Cráneo/citologíaRESUMEN
It has been suggested that the beneficial effects of soy protein isolate (SPI) on bone quality are due to either stimulation of estrogenic signaling via isoflavones or through a novel and as yet uncharacterized nonestrogenic pathway. In our study, SPI-fed rat serum inhibited the osteoblastic cell senescence pathway. This effect was accompanied by stimulation of cell differentiation, proliferation, and significant restoration of replicative senescent bone marrow mesenchymal ST2 cells (passaged 30 times). These effects were reproduced in bone from 5-wk-old intact and 10-wk-old ovariectomized female rats fed SPI diets. Caveolin-1 and p53 expression was decreased in bone in SPI-fed, but not in 17ß-estradiol (E2)-treated rats. In cell culture studies, membranous caveolin-1 and nuclear p53 expression was greater in replicative senescent ST2 cell cultures than in earlier passaged cells. SPI-fed rat serum significantly down-regulated both caveolin-1 and p53 in senescent and nonsenescent cells. Replicative senescent ST2 cells exhibited a strong association among caveolin-1, p53, and mouse double minute 2 homologue (mdm2), which was inhibited by SPI-fed rat serum. Overexpression of caveolin-1 in ST2 cells resulted in increased expression of p53 and p21, whereas, knockdown of caveolin-1 using shRNA led to increases in mdm2 and eliminated SPI-fed rat serum's effects on p53 and p21 expression. In contrast, manipulation of caveolin-1 expression did not affect the actions of E2 or isoflavones on p53 expression in either ST2 or OB6 cells. These results suggest that caveolin-1 is a mediator of nonestrogenic SPI effects on bone cells.-Zhang, J., Lazarenko, O. P., Blackburn, M. L., Badger, T. M., Ronis, M. J. J., Chen, J.-R. Soy protein isolate down-regulates caveolin-1 expression to suppress osteoblastic cell senescence pathways.
Asunto(s)
Caveolina 1/genética , Senescencia Celular/genética , Regulación hacia Abajo/genética , Osteoblastos/metabolismo , Transducción de Señal/genética , Proteínas de Soja/metabolismo , Animales , Huesos/metabolismo , Caveolina 1/metabolismo , Diferenciación Celular/genética , Línea Celular , Proliferación Celular , Femenino , Células Madre Mesenquimatosas/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Ratas , Ratas Sprague-Dawley , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
In both rodents and humans, excessive consumption of a typical Western diet high in saturated fats and cholesterol is known to result in disruption of energy metabolism and development of obesity and insulin resistance. However, how these high-fat, energy-dense diets affect bone development, morphology, and modeling is poorly understood. Here we show that male weanling rats fed a high-fat (HF) diet containing 45% fat and 0.5% cholesterol made with casein (HF-Cas) for 6 wk displayed a significant increase in bone marrow adiposity and insulin resistance. Substitution of casein with soy protein isolate (SPI) in the HF diet (HF-SPI) prevented these effects. Maintenance of bone quantity in the SPI-fed rats was associated with increased undercarboxylated osteocalcin secretion and altered JNK/IRS1/Akt insulin signaling in osteoblasts. The HF-Cas group had significantly greater serum nonesterified free fatty acid (NEFA) concentrations than controls, whereas the HF-SPI prevented this increase. In vitro treatment of osteoblasts or mesenchymal stromal ST2 cells with NEFAs significantly decreased insulin signaling. An isoflavone mixture similar to that found in serum of HF-SPI rats significantly increased in vitro osteoblast proliferation and blocked significantly reduced NEFA-induced insulin resistance. Finally, insulin/IGF1 was able to increase both osteoblast activity and differentiation in a set of in vitro studies. These results suggest that high-fat feeding may disrupt bone development and modeling; high concentrations of NEFAs and insulin resistance occurring with high fat intake are mediators of reduced osteoblast activity and differentiation; diets high in soy protein may help prevent high dietary fat-induced bone impairments; and the molecular mechanisms underlying the SPI-protective effects involve isoflavone-induced normalization of insulin signaling in bone.
Asunto(s)
Insulina/metabolismo , Obesidad/tratamiento farmacológico , Proteínas de Soja/uso terapéutico , Animales , Western Blotting , Línea Celular , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos no Esterificados/farmacología , Inmunoprecipitación , Resistencia a la Insulina/fisiología , Isoflavonas/farmacología , Masculino , Obesidad/etiología , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteocalcina/metabolismo , Ratas , Transducción de Señal/efectos de los fármacosRESUMEN
Phenolic acids, such as hippuric acid (HA) and 3-(3-hydroxyphenyl) propionic acid (3-3-PPA), can be produced from microbiome digestion of polyphenols. Previously it was found that HA and 3-3-PPA facilitate bone formation and suppress bone resorption. However, the mechanism of action by which HA and 3-3-PPA protect bone from degeneration is currently unknown. In this report, we present that HA and 3-3-PPA suppression of bone resorption is able to ameliorate bone loss in an ovariectomy (OVX) osteopenic mouse model though not to the extent of Zoledronic acid (ZA). HA and 3-3-PPA treatments were shown to significantly decrease bone marrow adipocyte-like cell formation and inhibited gene expression of key adipogenesis regulator peroxisome proliferator activated receptor gamma (PPARγ) and lipoprotein lipase (Lpl) in bone from OVX mice. In addition, ChIP experiments showed that the association between PPARγ and Lpl promoter region in preadipocyte-like cells was significantly suppressed following HA or 3-3-PPA treatment. Contrasting HA and 3-3-PPA, ZA significantly increased TRAP activity in the area close to growth plate and significantly suppressed bone cell proliferation. These data suggest that phenolics acids such as HA or 3-3-PPA may prevent bone degeneration after OVX through suppression of inflammatory milieu in the bone.
Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Hidroxibenzoatos , Fenoles , Propionatos , Femenino , Ratones , Animales , Humanos , Adipogénesis , Médula Ósea , PPAR gamma/genética , PPAR gamma/metabolismo , Enfermedades Óseas Metabólicas/tratamiento farmacológico , Enfermedades Óseas Metabólicas/etiología , Enfermedades Óseas Metabólicas/prevención & control , Ácido Zoledrónico , Esteroides , OvariectomíaRESUMEN
In multiple myeloma (MM), increased osteoclast differentiation leads to the formation of osteolytic lesions in most MM patients. Bisphosphonates, such as zoledronic acid (ZA), are used to ameliorate bone resorption, but due to risk of serious side effects as well as the lack of repair of existing lesions, novel anti-bone resorption agents are required. Previously, the absence of osteolytic lesions in MM was strongly associated with elevated levels of cystatin M/E (CST6), a cysteine protease inhibitor, secreted by MM cells. In this study, both MM- and ovariectomy (OVX)-induced osteoporotic mouse models were used to compare the effects of recombinant mouse CST6 (rmCst6) and ZA on preventing bone loss. µCT showed that rmCst6 and ZA had similar effects on improving percent bone volume, and inhibited differentiation of non-adherent bone marrow cells into mature osteoclasts. Single-cell RNA sequencing showed that rmCst6 and not ZA treatment reduced bone marrow macrophage percentage in the MM mouse model compared to controls. Protein and mRNA arrays showed that both rmCst6 and ZA significantly inhibit OVX-induced expression of inflammatory cytokines. For OVX mice, ERα protein expression in bone was brought to sham surgery level by only rmCst6 treatments. rmCst6 significantly increased mRNA and protein levels of ERα and significantly increased total intracellular estrogen concentrations for ex vivo osteoclast precursor cell cultures. Based on these results, we conclude that CST6 improves MM or OVX bone loss models by increasing the expression of estrogen receptors as well as the intracellular estrogen concentration in osteoclast precursors, inhibiting their maturation.
RESUMEN
Epidemiological studies show that maternal obesity during intrauterine and early postnatal life increases the risk of low bone mass and fracture later in life. Here, we show that bone development is inhibited in gestational embryonic day 18.5 (E18.5) embryos from rat dams made obese by feeding a high-fat diet (HFD). Moreover, fetal rat osteogenic calvarial cells (FOCCs) from these obese dams have significantly less potential to develop into mature osteoblasts compared to cells from AIN-93G diet-fed controls. Profiling of transcriptional genes for osteogenesis revealed a profound decrease in the homeodomain-containing factor A10 (HoxA10) in FOCCs from fetuses of HFD-induced obese dams. Significant methylation of the HoxA10 promoter was found in those FOCCs, as well as in mouse ST2 cells treated with a mixture of free fatty acids similar to that found in serum from HFD-induced obese rats. This was accompanied by lower expression of osteogenic markers, but higher levels of PPARγ. Control FOCCs depleted of the HoxA10 gene (shRNA) ex vivo behave similarly to cells from fetuses of obese dams; conversely, overexpression of HoxA10 gene in FOCCs from HFD rats exhibit the same phenotype as controls. Treatment of FOCCs from control rats or of ST2 cells with an artificial mixture of free fatty acids significantly down-regulated HoxA10 protein expression, and cells exhibited adipocyte-like properties. These results suggest that maternal obesity impairs fetal skeletal development through down-regulation of the HoxA10 gene, which may lead to an increase in the prevalence of low bone mass in the offspring later in life.
Asunto(s)
Desarrollo Óseo/genética , Metilación de ADN , Proteínas de Homeodominio/genética , Obesidad/fisiopatología , Animales , Western Blotting , Línea Celular , Células Cultivadas , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/efectos adversos , Regulación hacia Abajo , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas Homeobox A10 , Proteínas de Homeodominio/metabolismo , Masculino , Obesidad/etiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo , Complicaciones del Embarazo/etiología , Complicaciones del Embarazo/fisiopatología , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cráneo/citología , Cráneo/embriología , Cráneo/metabolismo , Factores de TiempoRESUMEN
BACKGROUND: Early infant feeding can affect skeletal development. Most children are fed with breast milk, dairy-based infant formula, or soy-based infant formula during the first year of life. The National Health and Nutrition Examination Survey 2003-2010 reports that 12% of the US infants consume soy-based infant formula. Despite potential effects of soy-associated isoflavones on skeletal development, studies investigating bone metabolism and structural and functional bone indices in children are lacking. OBJECTIVE: The aim of this observational study was to investigate early effects of soy-based infant formula (SF group) intake on bone metabolism and structure during the first 6 y of life comparing with those of infants fed with breast milk (BF group) and dairy-based infant formula (MF group). METHODS: A total of 433 healthy infants were followed up from 3 mo to 6 y of age. Children's skeletal development was assessed using dual-energy X-ray absorptiometry (DXA; N = 433) and peripheral quantitative computed tomography (pQCT; n = 78). The urinary biomarkers of bone metabolism (N-terminal telopeptide of type I collagen [NTx] and osteocalcin) were evaluated using immunoassays at 6, 24, 60, and 72 mo. RESULTS: No statistically significant group differences were observed in bone mineral density (BMD) between the BF, MF, and SF groups, assessed using DXA or pQCT. At 6 y of age, children in the SF group showed significantly greater whole-body bone mineral content measured using DXA than those in the MF group. Six-month-old boys in the SF group demonstrated significantly greater levels of NTx than those in the MF group and significantly greater osteocalcin levels than those in the BF group. CONCLUSIONS: Together, these data suggest that although infants at age 6 mo in the SF group showed some enhanced bone metabolism compared with those in the BF and MF groups, as indicated by the urinary biomarkers, no differences in bone metabolism or BMD were noted between ages 2 and 6 y. This trial was registered at clinicaltrials.gov as NCT00616395.
Asunto(s)
Leche Humana , Leche , Lactante , Masculino , Femenino , Humanos , Niño , Animales , Leche/metabolismo , Osteocalcina/metabolismo , Encuestas Nutricionales , Fórmulas Infantiles , Alimentos Formulados , Lactancia MaternaRESUMEN
Chronic alcohol abuse results in decreased bone mineral density (BMD), which can lead to increased fracture risk. In contrast, low levels of alcohol have been associated with increased BMD in epidemiological studies. Alcohol's toxic skeletal effects have been suggested to involve impaired vitamin D/calcium homeostasis. Therefore, dietary vitamin D supplementation may be beneficial in reducing bone loss associated with chronic alcohol consumption. Six-week-old female C57BL/6J mice were pair-fed ethanol (EtOH)-containing liquid diets (10 or 36% total calories) for 78 days. EtOH exposure at 10% calories had no effects on any measured bone or serum parameter. EtOH consumption at 36% of calories reduced BMD and bone strength (P<0.05), decreased osteoblastogenesis, increased osteoclastogenesis, suppressed 1,25-hydroxyvitamin D3 [1,25(OH)2D3] serum concentrations (P<0.05), and increased apoptosis in bone cells compared with pair-fed controls. In a second study, female mice were pair-fed 30% EtOH diets with or without dietary supplementation with vitamin D3 (cholecalciferol; VitD) for 40 days. VitD supplementation in the EtOH diet protected against cortical bone loss, normalized alcohol-induced hypocalcaemia, and suppressed EtOH-induced expression of receptor of nuclear factor-κB ligand mRNA in bone. In vitro, pretreatment of 1,25(OH)2D3 in osteoblastic cells inhibited EtOH-induced apoptosis. In EtOH/VitD mice circulating 1,25(OH)2D3 was lower compared with mice receiving EtOH alone (P<0.05), suggesting increased sensitivity to feedback control of VitD metabolism in the kidney. These findings suggest dietary VitD supplementation may prevent skeletal toxicity in chronic drinkers by normalizing calcium homeostasis, preventing apoptosis, and suppressing EtOH-induced increases in bone resorption.
Asunto(s)
Densidad Ósea/efectos de los fármacos , Depresores del Sistema Nervioso Central/toxicidad , Etanol/toxicidad , Osteoporosis Posmenopáusica/prevención & control , Vitamina D/farmacología , Vitaminas/farmacología , Animales , Apoptosis/efectos de los fármacos , Fenómenos Biomecánicos , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Médula Ósea/efectos de los fármacos , Remodelación Ósea/efectos de los fármacos , Células Cultivadas , Depresores del Sistema Nervioso Central/antagonistas & inhibidores , Colecalciferol/sangre , Colecalciferol/farmacología , Etanol/antagonistas & inhibidores , Femenino , Fémur/patología , Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteoporosis Posmenopáusica/inducido químicamente , ARN/biosíntesis , ARN/genética , Tomografía Computarizada por Rayos X , Vitamina D/sangre , Vitaminas/sangre , Aumento de Peso/efectos de los fármacosRESUMEN
Sex steroid deficiency plays critical roles in the pathophysiology of bone as the result of uncertain bone remodeling, i.e., increased bone resorption with equivocal bone formation. We have previously shown that GPR109A, a G protein coupled receptor, controls osteoclastogenesis and bone resorption, where global GPR109A deletion decreased osteoclast bone resorption and increased bone mass. Here, we used global GPR109A gene deletion, ovariectomized (OVX) and orchidectomized (ORX) mouse models to probe the role of GPR109A in gonadectomy-induced bone loss in female and male mice. Six months old GPR109A-/- mice and their wild type littermates were allocated to Sham or gonadectomized groups for six weeks. Using densitometric micro-CT confirmed by peripheral quantitative CT (pQCT) scans on tibia and spine, and three-point bending test on femur ex vivo, we found the bone volume, trabecular number, as well as bone mineral density and content in both trabecular and cortical sites were significantly decreased in wild type OVX and ORX compared with respective Sham groups. While bone mass in both male and female GPR109A-/- Sham groups were significantly higher compared with their respective wild type Sham groups, global GPR109A gene deletion ameliorated gonadectomy-induced bone loss. In GPR109A-/- females, most of bone mass and strength parameters measured by micro-CT, pQCT and three-point bending test were not different between Sham and OVX groups. In wild type but not in GPR109-/- mice, bone remodeling marker measurements indicated that both bone resorption (Cathepsin K) and bone formation (osteocalcin) markers were increased in gonadectomized mice compared to sham, with the exception of bone specific ALP, which was decreased in gonadectomized mice. Expression of bone resorption markers (Cathepsin K) were significantly lower, but ß-catenin expression was higher in GPR109A-/- mice compared with their wild type littermates. Collectively, these data indicate that global GPR109A deletion ameliorates gonadectomy-induced bone loss through suppression of bone resorption.
Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Receptores Acoplados a Proteínas G/genética , Animales , Densidad Ósea , Resorción Ósea/genética , Catepsina K , Femenino , Eliminación de Gen , Gónadas/cirugía , Humanos , Masculino , Ratones , Ovariectomía , Microtomografía por Rayos XRESUMEN
Studies from both humans and animal models indicated that maternal chronic poor-quality diet, especially a high fat diet (HFD), is significantly associated with reduced bone density and childhood fractures in offspring. When previously studied in a rat model, our data suggested that maternal HFD changes epigenetic marks such as DNA methylation and histone modifications to control osteoblast metabolism. In mouse embryonic and postnatal offspring bone samples, a ChIP-sequencing (ChIP-Seq)-based genome-wide method was used to locate the repressive histone mark H3K27me3 (mediated via the polycomb histone methyltransferase, Ezh2) and expressive histone mark H3K27ac (p300/CBP mediated) throughout the genome. Using isolated mouse embryonic cells from foetal calvaria (osteoblast-like cells), H3K27me3 ChIP-Seq showed that 147 gene bodies and 26 gene promoters in HFD embryotic samples had a greater than twofold increase in H3K27me peaks compared to controls. Among the HFD samples, Pthlh and Col2a1 that are important genes playing roles during chondro- and osteogenesis had significantly enriched levels of H3K27me3. Their decreased mRNA expression was confirmed by real-time PCR and standard ChIP analysis, indicating a strong association with Ezh2 mediated H3K27me3 epigenetic changes. Using embryonic calvaria osteoblastic cells and offspring bone samples, H3K27ac ChIP-Seq analysis showed that osteoblast inhibitor genes Tnfaip3 and Twist1 had significantly enriched peaks of H3K27ac in HFD samples compared to controls. Their increased gene expression and association with H3K27ac were also confirmed by real-time PCR and standard ChIP analysis. These findings indicate that chronic maternal HFD changes histone trimethylation and acetylation epigenetic marks to regulate expression of genes controlling osteoblastogenesis.
Asunto(s)
Dieta Alta en Grasa , Histonas , Humanos , Ratones , Animales , Ratas , Niño , Histonas/genética , Histonas/metabolismo , Dieta Alta en Grasa/efectos adversos , Metilación de ADN , Epigénesis Genética , AcetilaciónRESUMEN
Tightly regulated and cell-specific NADPH-oxidases (Nox) represent one of the major sources of reactive oxygen species (ROS) signaling molecules that are involved in tissue development and stem cell self-renewal. We have characterized the role of Nox4 in osteo-progenitors during postnatal bone development. Nox4 expression in bone and ROS generation were increased during early osteoblast differentiation and bone development. Stromal osteoblastic cell self-renewal, proliferation and ROS production were significantly lower in samples from whole-body Nox4 knockout mice (Nox4-/-) and conditional knockout (CKO) mice with depletion of Nox4 in the limb bud mesenchyme compared with those from control mice (Nox4fl/fl), but they were reversed after 9 passages. In both sexes, bone volume, trabecular number and bone mineral density were significantly lower in 3-week old CKO and Nox4-/- mice compared with Nox4fl/fl controls. This was reflected in serum levels of bone formation markers alkaline phosphatase (ALP) and procollagen 1 intact N-terminal propeptide (P1NP). However, under-developed bone formation in 3-week old CKO and Nox4-/- mice quickly caught up to levels of control mice by 6-week of age, remained no different at 13-week of age, and was reversed in 32-week old male mice. Osteoclastogenesis showed no differences among groups, however, CTX1 reflecting osteoclast activity was significantly higher in 3-week old male CKO and Nox4-/- mice compared with control mice, and significantly lower in 32-week old Nox4-/- mice compared with control mice. These data suggest that Nox4 expression and ROS signaling in bone and osteoblastic cells coordinately play an important role in osteoblast differentiation, proliferation and maturation.
Asunto(s)
Desarrollo Óseo , NADPH Oxidasa 4 , Osteogénesis , Animales , Desarrollo Óseo/fisiología , Femenino , Masculino , Ratones , Ratones Noqueados , NADPH Oxidasa 4/biosíntesis , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Osteogénesis/fisiología , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Previous in vitro data suggest that ethanol (EtOH) activates NADPH oxidase (Nox) in osteoblasts leading to accumulation of reactive oxygen species (ROS). This might be a mechanism underlying inhibition of bone formation and increased bone resorption observed in vivo after EtOH exposure. In a rat model in which cycling females were infused intragastrically with EtOH-containing liquid diets, EtOH significantly decreased bone formation and stimulated osteoblast-dependent osteoclast differentiation. These effects were reversed by exogenous 17-ß-estradiol coadministration. Moreover, coadministration of N-acetyl cysteine (NAC), an antioxidant, or diphenylene iodonium (DPI), a specific Nox inhibitor, also abolished chronic EtOH-associated bone loss. EtOH treatment up-regulated mRNA levels of Nox1, 2, 4, and the receptor activator of nuclear factor-κB ligand (RANKL), an essential factor for differentiation of osteoclasts in bone. Protein levels of Nox4, a major Nox isoform expressed in nonphagocytic cells, was also up-regulated by EtOH in bone. 17-ß-Estradiol, NAC, and DPI were able to normalize EtOH-induced up-regulation of Nox and RANKL. In vitro experiments demonstrated that EtOH directly up-regulated Nox expression in osteoblasts. Pretreatment of osteoblasts with DPI eliminated EtOH-induced RANKL promoter activity. Furthermore, EtOH induced RANKL gene expression, and RANKL promoter activation in osteoblasts was ROS-dependent. These data suggest that inhibition of Nox expression and activity may be critical for prevention of chronic EtOH-induced osteoblast-dependent bone loss.
Asunto(s)
Resorción Ósea/enzimología , Resorción Ósea/prevención & control , Etanol/toxicidad , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/metabolismo , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Animales , Resorción Ósea/inducido químicamente , Línea Celular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Estradiol/farmacología , Estradiol/uso terapéutico , Femenino , Compuestos Onio/farmacología , Compuestos Onio/uso terapéutico , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Mechanical stresses associated with physical activity (PA) have beneficial effects on increasing BMD and improving bone quality. However, a high-fat diet (HFD) and obesity tend to have negative effects on bone, by increasing bone marrow adiposity leading to increased excretion of proinflammatory cytokines, which activate RANKL-induced bone resorption. In the current study, whether short-term increased PA via access to voluntary wheel running during early life has persistent and protective effects on HFD-induced bone resorption was investigated. Sixty 4-week-old male C57BL6/J mice were divided into two groups postweaning: without or with PA (access to voluntary running wheel 7-8 km/day) for 4 weeks. After 4 weeks with or without PA, mice were further subdivided into control diet or HFD groups for 8 weeks, and then all animals were switched back to control diet for an additional 4 weeks. Mice from the HFD groups were significantly heavier and obese; however, after 4 weeks of additional control diet their body weights returned to levels of mice on continuous control diet. Using µ-CT and confirmed by pQCT of tibias and spines ex vivo, it was determined that bone volume and trabecular BMD were significantly increased with PA in control diet animals compared with sedentary animals without access to wheels, and such anabolic effects of PA on bone were sustained after ceasing PA in adult mice. Eight weeks of a HFD deteriorated bone development in mice. Unexpectedly, early-life PA did not prevent persistent effects of HFD on deteriorating bone quality; in fact, it exacerbated a HFD-induced inflammation, osteoclastogenesis, and trabecular bone loss in adult mice. In accordance with these data, signal transduction studies revealed that a HFD-induced Ezh2, DNA methyltransferase 3a, and nuclear factor of activated T-cells 1 expression were amplified in nonadherent hematopoietic cells. In conclusion, short-term increased PA in early life is capable of increasing bone mass; however, it alters the HFD-induced bone marrow hematopoietic cell-differentiation program to exacerbate increased bone resorption if PA is halted. © 2021 Arkansas Children's Nutrition Center. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
RESUMEN
The G protein-coupled receptor 109 A (GPR109A) is robustly expressed in osteoclastic precursor macrophages. Previous studies suggested that GPR109A mediates effects of diet-derived phenolic acids such as hippuric acid (HA) and 3-(3-hydroxyphenyl) propionic acid (3-3-PPA) on promoting bone formation. However, the role of GPR109A in metabolic bone homeostasis and osteoclast differentiation has not been investigated. Using densitometric, bone histologic and molecular signaling analytic methods, we uncovered that bone mass and strength were significantly higher in tibia and spine of standard rodent diet weaned 4-week-old and 6-month-old GPR109A gene deletion (GPR109A-/-) mice, compared to their wild type controls. Osteoclast numbers in bone and in ex vivo bone marrow cell cultures were significantly decreased in GPR109A-/- mice compared to wild type controls. In accordance with these data, CTX-1 in bone marrow plasma and gene expression of bone resorption markers (TNFα, TRAP, Cathepsin K) were significantly decreased in GPR109A-/- mice, while on the other hand, P1NP was increased in serum from both male and female GPR109A-/- mice compared to their respective controls. GPR109A deletion led to suppressed Wnt/ß-catenin signaling in osteoclast precursors to inhibit osteoclast differentiation and activity. Indeed, HA and 3-3-PPA substantially inhibited RANKL-induced GPR109A expression and Wnt/ß-catenin signaling in osteoclast precursors and osteoclast differentiation. Resultantly, HA significantly inhibited bone resorption and increased bone mass in wild type mice, but had no additional effects on bone in GPR109A-/- mice compared with their respective untreated control mice. These results suggest an important role for GPR109A during osteoclast differentiation and bone resorption mediating effects of HA and 3-3-PPA on inhibiting bone resorption during skeletal development.
Asunto(s)
Resorción Ósea/prevención & control , Hipuratos/farmacología , Osteogénesis/efectos de los fármacos , Fenilpropionatos/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Evaluación Preclínica de Medicamentos , Femenino , Microbioma Gastrointestinal , Hipuratos/uso terapéutico , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenilpropionatos/uso terapéutico , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Vía de Señalización WntRESUMEN
Estrogen deficiency and aging play critical roles in the pathophysiology of bone as a result of increased oxidative stress. It has been suggested that prevention of NADPH oxidase- (Nox-) dependent accumulation of ROS may be an approach to potentially minimize bone loss caused by these conditions. Using ovariectomized (OVX) and Nox4 gene-deletion mouse models, we investigated the role of Nox4 in OVX-induced bone loss and osteoblast senescence signaling. Six-month-old WT C57Bl6 mice were allocated to a sham control group, OVX, and OVX plus E2 treatment group for 8 weeks. Decreased bone mass including BMD and BMC were found in the OVX group compared with the sham control (p < 0.05); E2 treatment completely reversed OVX-induced bone loss. Interestingly, the prevention of OVX-induced bone loss by E2 was associated with the elimination of increased senescence signaling in bone osteoblastic cells from the OVX group. E2 blunted OVX-induced p53 and p21 overexpression, but not p16 and Nox4 in bone. In addition, 8- and 11-month-old Nox4 KO female mice were OVX for 8 weeks. Significant bone loss and increased bone osteoblastic cell senescence signaling occurred not only in Nox4 KO OVX mice compared with sham-operated animals, but also in 11-month-old Nox4 KO sham mice compared with 8-month-old Nox4 KO sham mice (p < 0.05). These data suggest that Nox4-mediated ROS in bone osteoblastic cells may be dispensable for sex steroid deficiency-induced bone loss and senescence. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
RESUMEN
Rosiglitazone (Rosi), a member of the thiazolidinedione class of drugs used to treat type 2 diabetes, activates the adipocyte-specific transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma). This activation causes bone loss in animals and humans, at least in part due to suppression of osteoblast differentiation from marrow mesenchymal stem cells (MSC). In order to identify mechanisms by which PPARgamma2 suppresses osteoblastogenesis and promotes adipogenesis in MSC, we have analyzed the PPARgamma2 transcriptome in response to Rosi. A total of 4,252 transcriptional changes resulted when Rosi (1 microM) was applied to the U-33 marrow stromal cell line stably transfected with PPARgamma2 (U-33/gamma2) as compared to non-induced U-33/gamma2 cells. Differences between U-33/gamma2 and U-33 cells stably transfected with empty vector (U-33/c) comprised 7,928 transcriptional changes, independent of Rosi. Cell type-, time- and treatment-specific gene clustering uncovered distinct patterns of PPARgamma2 transcriptional control of MSC lineage commitment. The earliest changes accompanying Rosi activation of PPARgamma2 included effects on Wnt, TGFbeta/BMP and G-protein signaling activities, as well as sustained induction of adipocyte-specific gene expression and lipid metabolism. While suppression of osteoblast phenotype is initiated by a diminished expression of osteoblast-specific signaling pathways, induction of the adipocyte phenotype is initiated by adipocyte-specific transcriptional regulators. This indicates that distinct mechanisms govern the repression of osteogenesis and the stimulation of adipogenesis. The co-expression patterns found here indicate that PPARgamma2 has a dominant role in controlling osteoblast differentiation and suggests numerous gene-gene interactions that could lead to the identification of a "master" regulatory scheme directing this process.