RESUMEN
Salinization is one of the leading causes of arable land shrinkage and rice yield decline, recently. Therefore, developing and utilizing salt-tolerant rice varieties have been seen as a crucial and urgent strategy to reduce the effects of saline intrusion and protect food security worldwide. In the current study, the CRISPR/Cas9 system was utilized to induce targeted mutations in the coding sequence of the OsDSG1, a gene involved in the ubiquitination pathway and the regulation of biochemical reactions in rice. The CRISPR/Cas9-induced mutations of the OsDSG1 were generated in a local rice cultivar and the mutant inheritance was validated at different generations. The OsDSG1 mutant lines showed an enhancement in salt tolerance compared to wild type plants at both germination and seedling stages indicated by increases in plant height, root length, and total fresh weight as well as the total chlorophyll and relative water contents under the salt stress condition. In addition, lower proline and MDA contents were observed in mutant rice as compared to wild type plants in the presence of salt stress. Importantly, no effect on seed germination and plant growth parameters was recorded in the CRISRP/Cas9-induced mutant rice under the normal condition. This study again indicates the involvement of the OsDSG1 gene in the salt resistant mechanism in rice and provides a potential strategy to enhance the tolerance of local rice varieties to the salt stress.
Asunto(s)
Oryza , Tolerancia a la Sal , Tolerancia a la Sal/genética , Sistemas CRISPR-Cas , Oryza/metabolismo , Estrés Salino , MutaciónRESUMEN
BACKGROUND: Powdery mildew is a major disease that causes great losses in soybean yield and seed quality. Disease-resistant varieties, which are generated by reducing the impact of susceptibility genes through mutation in host plants, would be an effective approach to protect crops from this disease. The Mildew Locus O (MLO) genes are well-known susceptibility genes for powdery mildew in plant. In this study, we utilized the CRISPR/Cas9 system to induce targeted mutations in the soybean GmMLO genes to improve powdery mildew resistance. RESULTS: A dual-sgRNA CRISPR/Cas9 construct was designed and successfully transferred into the Vietnamese soybean cultivar DT26 through Agrobacterium tumefaciens-mediated transformation. Various mutant forms of the GmMLO genes including biallelic, chimeric and homozygous were found at the T0 generation. The inheritance and segregation of CRISPR/Cas9-induced mutations were confirmed and validated at the T1 and T2 generations. Out of six GmMLO genes in the soybean genome, we obtained the Gmmlo02/Gmmlo19/Gmmlo23 triple and Gmmlo02/Gmmlo19/Gmmlo20/Gmmlo23 quadruple knockout mutants at the T2 generation. When challenged with Erysiphe diffusa, a fungus that causes soybean powdery mildew, all mutant plants showed enhanced resistance to the pathogen, especially the quadruple mutant. The powdery mildew severity in the mutant soybeans was reduced by up to 36.4% compared to wild-type plants. In addition, no pleiotropic effect on soybean growth and development under net-house conditions was observed in the CRISPR/Cas9 mutants. CONCLUSIONS: Our results indicate the involvement of GmMLO02, GmMLO19, GmMLO20 and GmMLO23 genes in powdery mildew susceptibility in soybean. Further research should be conducted to investigate the roles of individual tested genes and the involvement of other GmMLO genes in this disease infection mechanism. Importantly, utilizing the CRISPR/Cas9 system successfully created the Gmmlo transgene-free homozygous mutant lines with enhanced resistance to powdery mildew, which could be potential materials for soybean breeding programs.
Asunto(s)
Sistemas CRISPR-Cas , Glycine max , Glycine max/genética , ARN Guía de Sistemas CRISPR-Cas , Fitomejoramiento , Mutación , Hongos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genéticaRESUMEN
MAIN CONCLUSION: Induced mutations in the SC-uORF of the tomato transcription factor gene SlbZIP1 by the CRISPR/Cas9 system led to the high accumulation of sugar and amino acid contents in tomato fruits. Tomato (Solanum lycopersicum) is one of the most popular and consumed vegetable crops in the world. Among important traits for tomato improvement such as yield, biotic and abiotic resistances, appearance, post-harvest shelf life and fruit quality, the last one seems to face more challenges because of its genetic and biochemical complexities. In this study, a dual-gRNAs CRISPR/Cas9 system was developed to induce targeted mutations in uORF regions of the SlbZIP1, a gene involved in the sucrose-induced repression of translation (SIRT) mechanism. Different induced mutations in the SlbZIP1-uORF region were identified at the T0 generation, stably transferred to the offspring, and no mutation was found at potential off-target sites. The induced mutations in the SlbZIP1-uORF region affected the transcription of SlbZIP1 and related genes in sugar and amino acid biosynthesis. Fruit component analysis showed significant increases in soluble solid, sugar and total amino acid contents in all SlbZIP1-uORF mutant lines. The accumulation of sour-tasting amino acids, including aspartic and glutamic acids, raised from 77 to 144%, while the accumulation of sweet-tasting amino acids such as alanine, glycine, proline, serine, and threonine increased from 14 to 107% in the mutant plants. Importantly, the potential SlbZIP1-uORF mutant lines with desirable fruit traits and no impaired effect on plant phenotype, growth and development were identified under the growth chamber condition. Our result indicates the potential utility of the CRISPR/Cas9 system for fruit quality improvement in tomato and other important crops.
Asunto(s)
Solanum lycopersicum , Factores de Transcripción , Factores de Transcripción/genética , Aminoácidos/metabolismo , Azúcares/metabolismo , Solanum lycopersicum/genética , Sistemas CRISPR-Cas , Frutas/genética , Frutas/metabolismoRESUMEN
BACKGROUND: The continuing spread of the newly emerged H7N9 virus among poultry in China, as well as the possibility of human-to-human transmission, has attracted numerous efforts to develop an effective vaccine against H7N9. The use of nanoparticles in vaccinology is inspired by the fact that most pathogens have a dimension within the nano-size range and therefore can be processed efficiently by the immune system, which leads to a potent immune response. Herein, we report a facile approach to increase antigen size to achieve not only fast but also effective responses against the recombinant HA/H7N9 protein via a simple conjugation of the protein onto the surface of nanodiamond particles. RESULTS: In this study, trimeric Haemagglutinin (H7) that is transiently expressed in N. benthamiana was purified using affinity chromatography, and its trimeric state was revealed successfully by the cross-linking reaction. The trimeric H7 solution was subsequently mixed with a nanodiamond suspension in different ratios. The successful conjugation of the trimeric H7 onto the surface of nanodiamond particles was demonstrated by the changes in size and Zeta-potential of the particles before and after protein coating, Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and Western-blot analysis. Next, biofunction of the protein-nanodiamond conjugates was screened using a haemagglutination assay. A mixture containing 5 µg of trimeric H7 and 60 µg of nanodiamond corresponds to a ratio of 1:12 (w/w) of agglutinated chicken red blood cells at HA titer of 1024, which is 512-fold higher than the HA titer of free trimeric H7. After the 2nd and 3rd immunization in mice, ELISA and Western blot analyses demonstrated that the physical mixture of trimeric H7 protein and nanodiamond (1:12, w/w) elicited statistically significant stronger H7-specific-IgG response demonstrated by higher amounts of H7N9-specific IgG (over 15.4-fold with P < 0.05 after the second immunization). CONCLUSIONS: These results indicated a potential effect inherent to nanodiamond towards modulating immune systems, which should be further evaluated and broadly applied in nanovaccine development.
Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H7N9 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Nanodiamantes , Infecciones por Orthomyxoviridae/prevención & control , Animales , Formación de Anticuerpos , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/uso terapéutico , Humanos , Inmunoglobulina G/inmunología , Vacunas contra la Influenza/química , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/inmunología , Gripe Humana/prevención & control , Ratones , Ratones Endogámicos BALB C , Nanodiamantes/química , Nanodiamantes/uso terapéutico , Nanodiamantes/ultraestructura , Infecciones por Orthomyxoviridae/inmunología , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/uso terapéuticoRESUMEN
This study was performed to evaluate the sequential transformation for soybean genome editing using the CRISPR/Cas9 system as well as to show a strategy for examining the activity of CRISPR/Cas9 constructs, especially the designed guide RNAs (gRNAs). The gRNAs for targeted mutations of an exogenous gene and multiple endogenous genes were constructed and transferred into a stably-overexpressed-Cas9 soybean line using Agrobacterium rhizogenes-mediated hairy root induction system. The targeted mutations were identified and characterized by the poly-acrylamide gel electrophoresis (PAGE) heteroduplex method and by sequencing. Induced mutations of the exogenous gene (gus) were observed in 57% of tested transgenic hairy roots, while 100% of the transgenic root lines showed targeted mutations of the endogenous (SACPD-C) gene. Multiple gRNAs targeting two endogenous genes (SACPD-C and SMT) induced mutation rates of 75% and 67%, respectively. Various indels including small and large deletions as well as insertions were found in target sites of the tested genes. This sequential transformation method could present the targeting efficacy of different gRNAs of each tested gene. Additionally, in this study differences in gRNA ratings were found between bioinformatics predictions and actual experimental results. This is the first successful application of the sequential transformation method for genome editing in soybean using the hairy root system. This method could be potentially useful for validating CRISPR/Cas9 constructs, evaluating gRNA targeting efficiencies, and could be applied for other research directions.
RESUMEN
Tobacco is an important commercial crop and a rich source of alkaloids for pharmaceutical and agricultural applications. However, its yield can be reduced by up to 70% due to virus infections, especially by a potyvirus Potato virus Y (PVY). The replication of PVY relies on host factors, and eukaryotic translation initiation factor 4Es (eIF4Es) have already been identified as recessive resistance genes against potyviruses in many plant species. To investigate the molecular basis of PVY resistance in the widely cultivated allotetraploid tobacco variety K326, we developed a dual guide RNA CRISPR/Cas9 system for combinatorial gene editing of two clades, eIF4E1 (eIF4E1-S and eIF4E1-T) and eIF4E2 (eIF4E2-S and eIF4E2-T) in the eIF4E gene family comprising six members in tobacco. We screened for CRISPR/Cas9-induced mutations by heteroduplex analysis and Sanger sequencing, and monitored PVYO accumulation in virus challenged regenerated plants by DAS-ELISA both in T0 and T1 generations. We found that all T0 lines carrying targeted mutations in the eIF4E1-S gene displayed enhanced resistance to PVYO confirming previous reports. More importantly, our combinatorial approach revealed that eIF4E1-S is necessary but not sufficient for complete PVY resistance. Only the quadruple mutants harboring loss-of-function mutations in eIF4E1-S, eIF4E1-T, eIF4E2-S and eIF4E2-T showed heritable high-level resistance to PVYO in tobacco. Our work highlights the importance of understanding host factor redundancy in virus replication and provides a roadmap to generate virus resistance by combinatorial CRISPR/Cas9-mediated editing in non-model crop plants with complex genomes.
Asunto(s)
Potyvirus , Solanum tuberosum , Sistemas CRISPR-Cas , Mutación , Enfermedades de las Plantas , NicotianaRESUMEN
Hairy root induction system has been applied in various plant species as an effective method to study gene expression and function due to its fast-growing and high genetic stability. Recently, these systems have shown to be an effective tool to evaluate activities of CRISPR/Cas9 systems for genome editing. In this study, Rhizobium rhizogenes mediated hairy root induction was optimized to provide an effective tool for validation of plant transformation vector, CRISPR/Cas9 construct activities as well as selection of targeted gRNAs for gene editing in cucumber (Cucumis sativus L.). Under the optimized conditions including OD650 at 0.4 for infection and 5 days of co-cultivation, the highest hairy root induction frequency reached 100% for the cucumber variety Choka F1. This procedure was successfully utilized to overexpress a reporter gene (gus) and induce mutations in two Lotus japonicus ROOTHAIRLESS1 homolog genes CsbHLH66 and CsbHLH82 using CRISPR/Cas9 system. For induced mutation, about 78% of transgenic hairy roots exhibited mutant phenotypes including sparse root hair and root hair-less. The targeted mutations were obtained in individual CsbHLH66, CsbHLH82, or both CsbHLH66 and CsbHLH82 genes by heteroduplex analysis and sequencing. The hairy root transformation system established in this study is sufficient and potential for further research in genome editing of cucumber as well as other cucumis plants.
RESUMEN
Raffinose family oligosaccharides (RFOs) are major soluble carbohydrates in soybean seeds that cannot be digested by human and other monogastric animals. Hence, a major goal is to reduce RFO levels to improve the nutritional quality of soybean. In this study, we utilized a dual gRNAs CRISPR/Cas9 system to induce knockouts in two soybean galactinol synthase (GOLS) genes, GmGOLS1A and its homeolog GmGOLS1B. Genotyping of T0 plants showed that the construct design was efficient in inducing various deletions in the target sites or sequences spanning the two target sites of both GmGOLS1A and GmGOLS1B genes. A subset of induced alleles was successfully transferred to progeny and, at the T2 generation, we identified null segregants of single and double mutant genotypes without off-target induced mutations. The seed carbohydrate analysis of double mutant lines showed a reduction in the total RFO content of soybean seed from 64.7 mg/g dry weight to 41.95 mg/g dry weight, a 35.2% decrease. On average, the stachyose content, the most predominant RFO in soybean seeds, decreased by 35.4% in double mutant soybean, while the raffinose content increased by 41.7%. A slight decrease in verbascose content was also observed in mutant lines. Aside from changes in soluble carbohydrate content, some mutant lines also exhibited increased protein and fat contents. Otherwise, no difference in seed weight, seed germination, plant development and morphology was observed in the mutants. Our findings indicate that GmGOLS1A and GmGOLS1B contribute to the soybean oligosaccharide profile through RFO biosynthesis pathways, and are promising targets for future investigation, as well as crop improvement efforts. Our results also demonstrate the potential in using elite soybean cultivars for transformation and targeted genome editing.